• Title/Summary/Keyword: 3D-simulator

Search Result 700, Processing Time 0.036 seconds

Development of a 3D Simulator and Intelligent Control of Track Vehicle (궤도차량의 지능제어 및 3D 시률레이터 개발)

  • 장영희;신행봉;정동연;서운학;한성현;고희석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.107-111
    • /
    • 1998
  • This paper presents a now approach to the design of intelligent contorl system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. Moreover, We develop a Windows 95 version dynamic simulator which can simulate a track vehicle model in 3D graphics space. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The dynamic simulator for track vehicle is developed by Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D Graphics. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

Algorithmic Proposal of Optimal Loading Pattern and Obstacle-Avoidance Trajectory Generation for Robot Palletizing Simulator (로봇 팔레타이징 시뮬레이터를 위한 적재 패턴 생성 및 시변 장애물 회피 알고리즘의 제안)

  • Yu, Seung-Nam;Lim, Sung-Jin;Kim, Sung-Rak;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1137-1145
    • /
    • 2007
  • Palletizing tasks are necessary to promote efficient storage and shipping of boxed products. These tasks, however, involve some of the most monotonous and physically demanding labor in the factory. Thus, many types of robot palletizing systems have been developed, although many robot motion commands still depend on the teach pendant. That is, the operator inputs the motion command lines one by one. This is very troublesome and, most importantly, the user must know how to type the code. We propose a new GUI(Graphic User Interface) for the palletizing system that is more convenient. To do this, we used the PLP "Fast Algorithm" and 3-D auto-patterning visualization. The 3-D patterning process includes the following steps. First, an operator can identify the results of the task and edit them. Second, the operator passes the position values of objects to a robot simulator. Using those positions, a palletizing operation can be simulated. We chose a widely used industrial model and analyzed the kinematics and dynamics to create a robot simulator. In this paper we propose a 3-D patterning algorithm, 3-D robot-palletizing simulator, and modified trajectory generation algorithm, an "overlapped method" to reduce the computing load.

Development of a PC based Simulator for Excavator Manipulation using Virtual Reality (PC기반의 가상현실을 이용한 굴삭기 조작 시뮬레이터 개발)

  • Lee, Se-Bok;Kim, In-Shik;Cho, Chang-Hee;Kim, Sung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.536-541
    • /
    • 2000
  • A low cost PC based simulator for excavator manipulation has been developed using virtual reality technology. The simulator consists of two joystick input devices, server and client PCs, an excavator kinematics module, and a graphic rendering program Open Inventor. In order to use two joysticks in the PC window environment multi-thread programing with network protocol TCP/IP has been used. To provide realistic view to the operator, CAD program Pro/Engineer and 3D modeller have been employed to create 3D part geometry of tile manipulator and virtual environmental geometries. Those geometries also have been transformed and imported to the Open Inventor. The Simulator developed is to be improved for more realistic excavator operational training.

  • PDF

Analysis of lenticular 3D liquid crystal displays using 3D pixel simulator

  • Kim, Hwi;Jung, Kyoung-Ho;Yun, Hae-Young;Lee, Seung-Hoon;Kim, Hee-Sub;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.443-446
    • /
    • 2009
  • In this paper, an accurate ray-tracing based visual analysis method of lenticular 3D liquid liquid crystal display (LCDs) and some analysis results are presented. In the developed method, the geometric optics analysis is performed on the single 3D unit pixel of 3D lenticular LCD. It is shown that the display characteristics of 3D lenticular LCD panels of arbitrary size can be evaluated through the 3D unit pixel analysis. The analysis results of a few representative structures of 3D lenticular LCDs are compared.

  • PDF

Development of Driving Simulator for Safety Training of Agricultural Tractor Operators

  • Kim, Yu-Yong;Kim, Byounggap;Shin, Seung-Yeoub;Kim, Jinoh;Yum, Sunghyun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.389-399
    • /
    • 2014
  • Purpose: This study was aimed at developing a tractor-driving simulator for the safety training of agricultural tractor operators. Methods: The developed simulator consists of five principal components: mock operator control devices, a data acquisition and processing device, a motion platform, a visual system that displays a computer model of the tractor, a motion platform, and a virtual environment. The control devices of a real tractor cabin were successfully converted into mock operator control devices in which sensors were used for relevant measurements. A 3D computer model of the tractor was also implemented using 3ds Max, tractor dynamics, and the physics of Unity 3D. The visual system consisted of two graphic cards and four monitors for the simultaneous display of the four different sides of a 3D object to the operator. The motion platform was designed with two rotational degrees of freedom to reduce cost, and inverse kinematics was used to calculate the required motor positions and to rotate the platform. The generated virtual environment consisted of roads, traffic signals, buildings, rice paddies, and fields. Results: The effectiveness of the simulator was evaluated by a performance test survey administered to 128 agricultural machinery instructors, 116 of whom considered the simulator as having potential for improving safety training. Conclusions: From the study results, it is concluded that the developed simulator can be effectively used for the safety training of agricultural tractor operators.

Design of Driver License Simulation Model using 3D Graphics for beginner (운전연습생을 위한 3D 그래픽을 적용한 운전면허 시뮬레이터의 설계)

  • Won, Ji Woon;Seo, Hee Suk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.29-37
    • /
    • 2009
  • Recently, the structure of simulation environment is important issue in all fields. In case of the training for operating the machines which are costly such as airplanes or spaceships, simulators could be helpful for decreasing the costs and training effects by simulating real situation. When we get the driving license, too many peoples are waiting for their turns because of limited cars and testing spaces in Korea. To solve this problem, we've designed and developed the basic design for the simulators. We suggested the Computer 3D Simulation Model for practice of a drives's license. The concept of this simulator was from a 3D Racing-game which suit for driving exercise. We provide users with handle-controlled simulation setting in order that users feel reality as if they drive really through this simulator. We also use 'force-feedback' system which give handle vibration in case users collide against obstacles or exceed the line since users can absorb the simulation program and feel the sense for the real. This paper is the study about modeling the driving exercise model made use of 'computer 3D simulation', and producing and utilizing the simulator through this modeling.

Power Management System Simulator Modeling and Characteristics Analysis for Electric Propulsion Ship (LNGC용 Power Management System 시뮬레이터 모델링 및 특성분석)

  • Kim, Youngmin;Jeon, Kyung-Won;Jung, Sang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.878-884
    • /
    • 2015
  • In this paper, Power Management System(PMS) simulator for Liquid Nature Gas Carrier(LNGC) is developed. Major components of power system for LNGC, such as generator, diesel engine and governor, transformer, circuit breaker, and 3 phase loads models are built based on MATLAB/SIMULINK. With these designed major parts, PMS simulator modeling is carried out. Based on MATLAB/Graphical User Interface, PMS simulator control for LNGC, and Human Machine Interface for monitoring is designed. PMS simulator for LNGC carries out simulation according to sequence of characteristics analysis. By comparing results of predicted simulation for each sequence to that of characteristics analysis, the reliability of PMS simulator for LNGC will be verified.

Development of 3D simulator for biped robot (이족 보행 로보트를 위한 3차원 모의 실험기의 개발)

  • 김민수;이보희;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.928-931
    • /
    • 1996
  • It is necessary to develop the simulator for the test of stability and torque before the walking experiment of biped robot, because a robot may be damaged in an actual experiment. This thesis deals with the development of three-dimensional simulator for improving efficiency and safety during development and experimentation. The simulator is composed of three parts-solving dynamics, rendering pictures and communicating with the robot. In the first part, the D-H parameter and parameter of links can be loaded from the file and edited in the program. The results are obtained by using the Newton-Euler method and are stored in the file. Through the above process, the proper length of link and driving force can be found by using simulator before designing the robot. The second part is organized so that the user can easily see a specific value or a portion he wants by setting viewing parameters interactively. A robot is also shown as a shaded rendering picture in this part. In the last part, the simulator sends each desired angle of joints to the robot controller and each real angle of joints is taken from the controller and passed to the second part. The safety of the experiment is improved by driving the robot after checking whether the robot can be actuatable or not and whether the ZMP is located within the sole of the foot or not for a specific gait. The state of the robot can be easily grasped by showing the shaded rendering picture which displays the position of the ZMP, the driving force and the shape of robot.

  • PDF

Development of Simulator for Analyzing Intercept Performance of Surface-to-air Missile (지대공미사일 요격 성능 분석 시뮬레이터 개발)

  • Kim, Ki-Hwan;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • In modern war, Intercept Performance of SAM(Surface to Air Missile) is gaining importance as range and precision of Missile and Guided Weapon on information warfare have been improved. An aerial defence system using Surface-to-air Radar and Guided Missile is needed to be built for prediction and defense from threatening aerial attack. When developing SAM, M&S is used to free from a time limit and a space restriction. M&S is widely applied to education, training, and design of newest Weapon System. This study was conducted to develop simulator for evaluation of Intercept Performance of SAM. In this study, architecture of Intercept Performance of SAM analysis simulator for estimation of Intercept Performance of various SAM was suggested and developed. The developed Intercept Performance of SAM analysis simulator was developed by C++ and Direct3D, and through 3D visualization using the Direct3D, it shows procedures of the simulation on a user animation window. Information about design and operation of Fighting model is entered through input window of the simulator, and simulation engine consisted of Object Manager, Operation Manager, and Integrated Manager conducts modeling and simulation automatically using the information, so the simulator gives user feedback in a short time.

Networked Visualization for a Virtual Bicycle Simulator (가상현실 자전거 시뮬레이터에서 시각화 네트워크)

  • Lee J.H.;Han S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.3
    • /
    • pp.212-219
    • /
    • 2004
  • This paper presents the visualization method of the KAIST interactive bicycle simulator. The simulator consists of two bicycles of 6 DOF and 4 DOF platforms, force feedback handlebars and pedal resistance systems to generate motion feelings; a real-time visual simulator, a HMD and a beam projection system; and a 3D sound system. The system has an integrating control network with the server-client network structure for multiple simulators. The visual simulator generates dynamic images in real-time while communicating with other modules of the simulator. The operator of the simulator can have realistic visual experience of riding on a velodrome or through the KAIST campus, while being able to watch the other bicycle with an avatar.