• Title/Summary/Keyword: 3D-printed

Search Result 671, Processing Time 0.023 seconds

Impact of lattice versus solid structure of 3D-printed multiroot dental implants using Ti-6Al-4V: a preclinical pilot study

  • Lee, Jungwon;Li, Ling;Song, Hyun-Young;Son, Min-Jung;Lee, Yong-Moo;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.4
    • /
    • pp.338-350
    • /
    • 2022
  • Purpose: Various studies have investigated 3-dimensional (3D)-printed implants using Ti6Al-4V powder; however, multi-root 3D-printed implants have not been fully investigated. The purpose of this study was to explore the stability of multirooted 3D-printed implants with lattice and solid structures. The secondary outcomes were comparisons between the 2 types of 3D-printed implants in micro-computed tomographic and histological analyses. Methods: Lattice- and solid-type 3D-printed implants for the left and right mandibular third premolars in beagle dogs were fabricated. Four implants in each group were placed immediately following tooth extraction. Implant stability measurement and periapical X-rays were performed every 2 weeks for 12 weeks. Peri-implant bone volume/tissue volume (BV/TV) and bone mineral density (BMD) were measured by micro-computed tomography. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were measured in histomorphometric analyses. Results: All 4 lattice-type 3D-printed implants survived. Three solid-type 3D-printed implants were removed before the planned sacrifice date due to implant mobility. A slight, gradual increase in implant stability values from implant surgery to 4 weeks after surgery was observed in the lattice-type 3D-printed implants. The marginal bone change of the surviving solid-type 3D-printed implant was approximately 5 mm, whereas the value was approximately 2 mm in the lattice-type 3D-printed implants. BV/TV and BMD in the lattice type 3D-printed implants were similar to those in the surviving solid-type implant. However, BIC and BAFO were lower in the surviving solid-type 3D-printed implant than in the lattice-type 3D-printed implants. Conclusions: Within the limits of this preclinical study, 3D-printed implants of double-rooted teeth showed high primary stability. However, 3D-printed implants with interlocking structures such as lattices might provide high secondary stability and successful osseointegration.

A study on the accuracy evaluation of dental die models manufactured by 3D printing method (3D 인쇄방법으로 제작된 치과용 다이 모델의 정확도 평가연구)

  • Jang, Yeon
    • Journal of Technologic Dentistry
    • /
    • v.41 no.4
    • /
    • pp.287-293
    • /
    • 2019
  • Purpose: To evaluate the accuracy of the 3D printed die models and to investigate its clinical applicability. Methods: Stone die models were fabricated from conventional impressions(stone die model; SDM, n=7). 3D virtual models obtained from the digital impressions were manufactured as a 3D printed die models using a 3D printer(3D printed die models;3DM, n=7). Reference model, stone die models and 3D printed die models were scanned with a reference scanner. All dies model dataset were superimposed with the reference model file by the "Best fit alignment" method using 3D analysis software. Statistical analysis was performed using the independent t-test and 2-way ANOVA (α=.05). Results: The RMS value of the 3D printed die model was significantly larger than the RMS value of the stone die model (P<.001). As a result of 2-way ANOVA, significant differences were found between the model group (P<.001) and the part (P<.001), and their interaction effects (P<.001). Conclusion: The 3D printed die model showed lower accuracy than the stone die model. Therefore, it is necessary to further improve the performance of 3D printer in order to apply the 3D printed model in prosthodontics.

Evaluation of Mechanical Properties and Washability of 3D Printed lace/voil Composite Fabrics Manufactured by FDM 3D printing Technology (FDM 3D 프린팅 기술로 제작된 3D 프린팅 레이스/보일 복합직물의 역학적 특성 및 세탁성 평가)

  • Lee, Sunhee
    • Fashion & Textile Research Journal
    • /
    • v.20 no.3
    • /
    • pp.353-359
    • /
    • 2018
  • In this study, fused deposition modellig(FDM) 3D printing technology has been applied directly to polyester voil fabric to produce 3D printed lace/voil composite fabrics. A stereolithograpy(STL) file with a lace type 3D modelling under the various thickness were prepared and transformed into a g-code file using a g-code generator. The extrusion conditions for FDM 3D printing were controlled by 50mm/s of nozzle speed, $235^{\circ}C$ of nozzle temperature, $40^{\circ}C$ of heating bed temperature. 3D printed lace/voil composite fabriscs manufactured by 3D printing based on FDM using a thermoplactic polyurethane(TPU) filaments were obtained. To evaluate the mechanical properties and washability of the fabricated 3D printed lace/voil composite fabric, KES-FB system test, washing fastness test and dry cleaning resistance test were conducted. As 3D printing thickness increased, KOSHI, NUMERI, and FUKURAMI of 3D printed lace/voil composite fabric increased. From the results of the primary hand value test, 3D printed lace/voil composite fabrics were confirmed to be applicable to women's summer garments. As a result of the washability and dry cleaning resistance test of the 3D printed lace/voil composite fabrics, all samples were graded 4-5.

Development of 3D Printed Shoe Designs Using Traditional Muntin Patterns

  • Lim, Ho Sun
    • Fashion & Textile Research Journal
    • /
    • v.19 no.2
    • /
    • pp.134-139
    • /
    • 2017
  • This study proposes 3D printed shoe designs with patterns made by reinterpreting traditional Korean muntin patterns as customized designs that are unique to individual consumers and different from existing products. In the fashion industry, shoes with diverse designs grafted with 3D printing technology have been introduced. Artistic 3D printed shoes showcase the unique designs of designers. Functional and practical 3D printed shoes that can be worn during daily activities and during exercise have been actively developed. Traditional Korean pattern designs are also being recreated into designs reflecting the aesthetic sense of modern times with our own identity. The uniqueness of the traditional muntin patterns in geometric shapes, such as intersections of lines, rectangles, and octagons, are expressed in shoe designs with modern aesthetic senses by utilizing the traditional patterns that conform well to the modern geometric beauty of forms. This study was intended to develop 3D shoe designs that reinterpreted the motif of muntin patterns from among traditional Korean geometric patterns with a modern aesthetic sense. The octagonal patterns that express the scenery of spring can be seen through the muntins in traditional Korean-style houses were designed on the heels of shoes. Utilizing the Rhino CAD program and ProJet 660 Pro 3D printer, shoes were designed and printed. The processes for making shoes using 3D printing technology proposed in this study are significant because they represent the creation of designs in a new area. The results of this study might help in the development of 3D printed fashion products.

Color Characteristics of 3D-Printed TPU Material Applied with Ultra-Violet Curable Digital Printing Process (자외선 경화형 디지털 프린팅을 이용한 3D 프린팅 TPU 소재의 색채 특성)

  • Lee, Sunhee;Park, Soyeon;Jung, Imjoo;Lee, Jungsoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.1052-1062
    • /
    • 2021
  • This study aims to confirm the possibility of Ultra-Violet (UV)-printed 3D printing materials using thermal polyurethane (TPU) with CMYK colors by applying an eco-friendly UV digital printing process. A UV-printed 3D printing TPU material was prepared with cycles of UV printing and CMYK colors. Dyeability of the 3D TPU samples with cycles of UV printing and CMYK were analyzed for thickness, weight, surface roughness, reflectance, colorimetry, and K/S values. The thickness and weight of 3D-printed TPU samples with cycles of UV printing are increased with overprints from 1 to 5. The surface roughness of 3D-printed TPU samples with increasing UV prints were decreased, meaning that the surface of TPU samples becomes gradually smoother. The reflectance spectra of CMYK UV-printed TPU samples showed the surface reflectance within each characteristic wavelength of CMYK. The 3D-printed TPU samples, subjected to UV printing twice or more, showed low surface reflectance. After examining the L*a*b* of the 3D-printed TPU samples by the cycles of UV printing, the study found that the more UV got printed more than 2 times, the closer the color to each CMYK.

Fatigue Test of 3D-printed ABS Parts Fabricated by Fused Deposition Modeling (FDM 방식으로 제작된 ABS 재료의 피로 특성 평가)

  • Seol, Kyoung-Su;Shin, Byoung-Chul;Zhang, Sung-Uk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.93-101
    • /
    • 2018
  • FDM is one of the popular 3D printing technologies because of an inexpensive extrusion machine and multi-material printing. FDM can use thermoplastics such as ABS and PLA. The 3D-printed ABS parts fabricated by FDM are attractive in the automotive industry because of their weight. A 10% reduction in weight can increase the fuel economy by approximately 7%. To use 3D-printed ABS parts as automotive parts, we should evaluate the 3D-printed parts in terms of automotive reliability. In this study, 3D-printed ABS samples were evaluated using Ono's rotary bending fatigue test. We obtained an S-N curve for the 3D-printed ABS specimen from the finite-element analysis. The S-N curve can be useful in early-stage design decisions for 3D-printed ABS parts.

A study on consumer attitudes and purchase intentions for 3D printed products in the fashion industry (패션산업에서 3D 프린트 제품에 대한 소비자 태도 및 구매의도연구)

  • Kim, Jisoo;Shin, Sangmoo
    • The Research Journal of the Costume Culture
    • /
    • v.26 no.6
    • /
    • pp.919-933
    • /
    • 2018
  • Recently, the textile and fashion industry has adopted 3D printing technology, through which filaments are accumulated continuously in the form of sections to produce digitalized three-dimensional fashion products. Little research has been done regarding the consumer perspectives on 3D printed fashion product. Therefore, the purpose of this study was to investigate the effects of consumer innovativeness, uniqueness, and perception factors on consumer attitudes and purchasing intentions for 3D printed fashion products. A questionnaire was given to consumers living in Seoul and Kyunggi, South Korea. The data obtained from the 159 completed questionnaires was analyzed by regression analysis, factor analysis, and Cronbach's alpha using SPSS 24.0. The results were as follows: First, consumer innovativeness and uniqueness, in descending order, positively affect the perceived social image. Consumer innovativeness positively affects perceived aesthetics and consumer uniqueness positively affects perceived novelty. Second, social image has a positive effect on consumer attitudes to 3D printed fashion products. Third, consumer attitude positively affects purchasing intentions towards 3D printed fashion products. Fourth, consumer innovativeness and uniqueness, in descending order, have a positive effect on consumer attitudes and purchasing intentions for 3D printed fashion products. Fifth, social image and novelty, in descending order, positively affect purchase intentions for 3D printed fashion products. Therefore fashion firms should develop their marketing strategy to focus on innovative, unique consumers as a main target and aim to enhance buyers' social image by using 3D printed fashion products.

3D Printed Electronics Research Trend (3차원 인쇄기술을 이용한 전자소자 연구 동향)

  • Park, Yea-Seol;Lee Ju-Yong;Kang, Seung-Kyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.1-12
    • /
    • 2021
  • 3D printing, which designs product in three dimensions, draws attention as a technology that will lead the future for it dramatically shortens time for production without assembly, no matter how complex the structure is. The paper studies the latest researches of 3D-printed electronics and introduces papers studied electronics components, power supply, circuit interconnection and 3D-printed PCBs' applications. 3D-printed electronics showed possibility to simplify facilities and personalize electric devices by providing one-stop printing process of electronic components, soldering, stacking, and even encapsulation.

Prediction of Mechanical Response of 3D Printed Concrete according to Pore Distribution using Micro CT Images (마이크로 CT 이미지를 활용한 3D 프린팅 콘크리트의 공극 분포에 따른 인장파괴의 거동 예측)

  • Yoo, Chan Ho;Kim, Ji-Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.141-147
    • /
    • 2024
  • In this study, micro CT images were used to confirm the tensile fracture strength according to the pore distribution characteristics of 3D printed concrete. Unlike general specimens, concrete structures printed by 3D printing techniques have the direction of pores (voids) depending on the stacking direction and the presence of filaments contact surfaces. Accordingly, the pore distribution of 3D printed concrete specimens was analyzed through quantitative and qualitative methods, and the tensile strength by direction was analyzed through a finite element technique. It was confirmed that the pores inside the 3D printed specimen had directionality, resulting in their anisotropic behavior. This study aims to analyze the characteristics of 3D concrete printing specimen and correlate them with simulation-based mechanical properties to improve performance of 3D printed material and structure.

Dimensional Characteristics of Hydraulic Actuator Curve based on 3D Printing Filament Materials (3D 프린팅 필라멘트 재료에 따른 유압액츄에이터 커브의 치수 특성)

  • Jung, Myung-Hwi;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.74-79
    • /
    • 2021
  • In this paper, the 3D shape of a hydraulic actuator cover was 3D printed by applying two materials, namely PLA and ABS. Subsequently, the printed shape was scanned to analyze the material properties, dimensional change characteristics, dimensions, and scan shape as a real model. To compare and analyze material-specific 3D printing dimensions, a non-contact mobile laser scanner was used to scan a portion of the printed hydraulic actuator cover and the final alignment shape of the 3D printed part was studied on the basis of the design model.