• Title/Summary/Keyword: 3D-frame

Search Result 1,028, Processing Time 0.03 seconds

Resonance Phenomenon according to the relationship between Span Length of the Bridge and Effective Beating Interval of High-Speed Train (교량의 지간장과 고속전철하중 유효타격간격 사이의 관계에 따른 공진현상)

  • 김성일;곽종원;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.67-76
    • /
    • 1999
  • Resonance of the bridge can be occurred with the coincidence between a natural frequency of the bridge and a crossing frequency of moving loads which is determined from the speed and effective beating interval of the vehicle. In case of the railway bridge, the effective beating interval of the vehicle is fixed under the passage of specific trains. In the present study, resonance and cancellation of the bridge subjected to moving high-speed train are analyzed with the variations of span length. A steel-concrete composite railway bridge is idealized by the combinations of plate elements and space frame elements. High-speed train is idealized with moving constant forces and a 3-dimensional full modelling. From analyzing dynamic responses of D.M.F of vertical displacement, maximum vertical acceleration of the slab, and end rotation according to the variations of span length of the bridge, design criteria of span length of the bridge which satisfies dynamic safety is discussed.

  • PDF

Effects of the location and size of web openings on shear behavior of clamped-clamped reinforced concrete beams

  • Ceyhun Aksoylu;Yasin Onuralp Ozkilic;Ibrahim Y. Hakeem;Ilker Kalkan
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.251-264
    • /
    • 2024
  • The present study pertains to the effects of variations in the location and size of drilled web openings on the behavior of fixed-fixed reinforced concrete (RC) beams. For this purpose, a reference bending beam with a transverse opening in each half span was tested to failure. Later, the same beam was modeled and analyzed with the help of finite element software using ABAQUS. Upon achieving close agreement between the experimental and numerical results, the location and size of the web opening were altered to uncover the effects of these factors on the shear strength and load-deflection behavior of RC beams. The experimental failure mode of the tested beam and the numerical results were also verified by theoretical calculations. In numerical analysis, when compared to the reference (D0) specimen, if the distance of the opening center from the support is 0 or h or 2h, reduction in load-bearing capacity of 1.5%-22.8% or 2.0%-11.3% or is 4.1%-40.7%. In other words, both the numerical analyses and theoretical calculations indicated that the beam behavior shifted from shear-controlled to flexure-controlled as the openings approached the supports. Furthermore, the deformation capacities, energy absorption values, and the ductilities of the beams with different opening diameters also increased with the decreasing distance of the opening from supports. Web compression failure was shown to be the predominant mode of failure of beams with large diameters due to the lack of sufficient material in the diagonal compression strut of the beam. The present study indicated that transverse openings with diameters, not exceeding about 1/3 of the entire beam depth, do not cause the premature shear failure of RC beams. Finally, shear damage should be prevented by placing special reinforcements in the areas where such gaps are opened.

A Study on Optimal Location Selection and Analytic Method of Landmark Element in terms of Visual Perception (시각적 측면에서 랜드마크 요소의 최적입지선정 분석방법에 관한 연구)

  • Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6360-6367
    • /
    • 2015
  • The location selection of the element that should guarantee easy visual perception, like the landmark, is the a topic that appears much in the design process. Recently, a graph analysis technique using computers has been applied in order to evaluate the visibility of the visual element, but the analytic frame is flat and the setting of the visual pont and the matrix are fixed so there were great limitations in obtaining the results of the practical analysis. Thus, this study presented Nondirectional Multi-Dimensional Calculation (MDVC-N), an analytic methodology available for the analysis of the dynamic visual point in the 3D environment. It thus attempted to establish the analytic application using the 3D computer graphics technology and designed a script structure to set the visual point and the matrix. In addition to that, this study tried to verify the analytic methodology by applying the complex land as an example model, where buildings in various heights of terrains with a high-differences are located, verifying the same analytic methodology. It thus tried to identify the visual characteristics of each alternative location. The following results were gained from the study. 1) The visibility can be measured quantitatively trough the application of the 6-alternatives. 2) Using the 3dimensional graph, intuitive analysis was possible. 3) It attempted to improve the analytic applicability by calculating the results corrected as a variable behavior from the local integration variable of the space syntax.

Seismic Behavior and Performance Evaluation of Uckling-restrained Braced Frames (BRBFs) using Superelastic Shape Memory Alloy (SMA) Bracing Systems (초탄성 형상기억합금을 활용한 좌굴방지 가새프레임 구조물의 지진거동 및 성능평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.875-888
    • /
    • 2013
  • The researches have recently progressed toward the use of the superelastic shape memory alloys (SMAs) to develop new smart control systems that reduce permanent deformation occurring due to severe earthquake events and that automatically recover original configuration. The superelastic SMA materials are unique metallic alloys that can return to undeformed shape without additional heat treatments only after the removal of applied loads. Once the superelastic SMA materials are thus installed at the place where large deformations are likely to intensively occur, the structural system can make the best use of recentering capabilities. Therefore, this study is intended to propose new buckling-restrained braced frames (BRBFs) with superelastic SMA bracing systems. In order to verify the performance of such bracing systems, 6-story braced frame buildings were designed in accordance with the current design specifications and then nonlinear dynamic analyses were performed at 2D frame model by using seismic hazard ground motions. Based on the analysis results, BRBFs with innovative SMA bracing systems are compared to those with conventional steel bracing systems in terms of peak and residual inter-story drifts. Finally, the analysis results show that new SMA bracing systems are very effective to reduce the residual inter-story drifts.

The effect of infill walls on the fundamental period of steel frames by considering soil-structure interaction

  • Kianoosh Kiani;Sayed Mohammad Motovali Emami
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.417-431
    • /
    • 2024
  • The fundamental period of vibration is one of the most critical parameters in the analysis and design of structures, as it depends on the distribution of stiffness and mass within the structure. Therefore, building codes propose empirical equations based on the observed periods of actual buildings during seismic events and ambient vibration tests. However, despite the fact that infill walls increase the stiffness and mass of the structure, causing significant changes in the fundamental period, most of these equations do not account for the presence of infills walls in the structure. Typically, these equations are dependent on both the structural system type and building height. The different values between the empirical and analytical periods are due to the elimination of non-structural effects in the analytical methods. Therefore, the presence of non-structural elements, such as infill panels, should be carefully considered. Another critical factor influencing the fundamental period is the effect of Soil-Structure Interaction (SSI). Most seismic building design codes generally consider SSI to be beneficial to the structural system under seismic loading, as it increases the fundamental period and leads to higher damping of the system. Recent case studies and postseismic observations suggest that SSI can have detrimental effects, and neglecting its impact could lead to unsafe design, especially for structures located on soft soil. The current research focuses on investigating the effect of infill panels on the fundamental period of moment-resisting and eccentrically braced steel frames while considering the influence of soil-structure interaction. To achieve this, the effects of building height, infill wall stiffness, infill openings and soil structure interactions were studied using 3, 6, 9, 12, 15 and 18-story 3-D frames. These frames were modeled and analyzed using SeismoStruct software. The calculated values of the fundamental period were then compared with those obtained from the proposed equation in the seismic code. The results indicate that changing the number of stories and the soil type significantly affects the fundamental period of structures. Moreover, as the percentage of infill openings increases, the fundamental period of the structure increases almost linearly. Additionally, soil-structure interaction strongly affects the fundamental periods of structures, especially for more flexible soils. This effect is more pronounced when the infill wall stiffness is higher. In conclusion, new equations are proposed for predicting the fundamental periods of Moment Resisting Frame (MRF) and Eccentrically Braced Frame (EBF) buildings. These equations are functions of various parameters, including building height, modulus of elasticity, infill wall thickness, infill wall percentage, and soil types.

A Study on the Implementation of the Multi-Process Structured ISDN Terminal Adaptor for Sending the Ultra Sound Medical Images (다중처리 구조를 갖는 초음파 의료영상 전송용 ISDN(Integrated Services Digital Network) TA(Terminal Adaptor) 구현에 관한 연구)

  • 남상규;이영후
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.317-324
    • /
    • 1994
  • This paper proposed a new method in the implementation of ISDN (integrated services digital network) LAPD (link access procedure on the D-channel) and LAPB (link access procedure on the B-channel) protocols. The proposed method in this paper implement ISDW LAPD protocol through multi-tasking operating system and adopt a kernel part that is changed operating system to target board. The features of implemented system are (1) the para.llel processing of the events generated at each layer, as follows (2) the supporting necessary timers for the implementation of ISDW LAPD protocol from the kernel part by using software, (3) the recommanded SAP (Service Access Point) from CCITT was composed by using port function in the operating system. With the proposed method, the protocols of ISDH layerl, layer2 and layer3 (call control) were implemented by using the kernel part and related tests were carried out by connecting the ISDH terminal simulator to ISDN S-interface system using the ISDN LAPD protocol The results showed that ISDW S-interface terminals could be discriminated by TEI (Terminal Equipment Identifier) assignment in layer 2 (LAPD) and the message transmission of layer 3 was verified by establishing the multi-frame transmission and then through the path established by the LAPD protocol, a user data was tranfered and received on B-channel with LAPB protocol Thererfore, as new efficient ISDN S-interface environment was implemented in the thesis, it was verified that the implemented system can be utilized by connecting ISDW in the future to transfer a medical image data.

  • PDF

The study on the scattering ratio at the edge of the block according to the increasing block thickness in electron therapy (전자선 치료 시 차폐블록 두께 변화에 따른 블록 주변 선량에 관한 연구)

  • Park, Zi On;Gwak, Geun Tak;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Kim, Jung Soo;Kwon, Hyoung Cheol;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Purpose: The purpose is to clarify the effect of additional scattering ratio on the edge of the block according to the increasing block thickness with low melting point lead alloy and pure lead in electron beam therapy. Methods and materials: $10{\times}10cm^2$ Shielding blocks made of low melting point lead alloy and pure lead were fabricated to shield mold frame half of applicator. Block thickness was 3, 5, 10, 15, 20 (mm) for each material. The common irradiation conditions were set at 6 MeV energy, 300 MU / Min dose rate, gantry angle of $0^{\circ}$, and dose of 100 MU. The relative scattering ratio with increasing block thickness was measured with a parallel plate type ion chamber(Exradin P11) and phantom(RW3) by varying the position of the shielding block(cone and on the phantom), the position of the measuring point(surface ans depth of $D_{max}$), and the block material(lead alloy and pure lead). Results : When (depth of measurement / block position / block material) was (surface / applicator / pure lead), the relative value(scattering ratio) was 15.33 nC(+0.33 %), 15.28 nC(0 %), 15.08 nC(-1.31 %), 15.05 nC(-1.51 %), 15.07 nC(-1.37 %) as the block thickness increased in order of 3, 5, 10, 15, 20 (mm) respectively. When it was (surface / applicator / alloy lead), the relative value(scattering ratio) was 15.19 nC(-0.59 %), 15.25 nC(-0.20 %), 15.15 nC(-0.85 %), 14.96 nC(-2.09 %), 15.15 nC(-0.85 %) respectively. When it was (surface / phantom / pure lead), the relative value(scattering ratio) was 15.62 nC(+2.23 %), 15.59 nC(+2.03 %), 15.53 nC(+1.67 %), 15.48 nC(+1.31 %), 15.34 nC(+0.39 %) respectively. When it was (surface / phantom / alloy lead), the relative value(scattering ratio) was 15.56 nC(+1.83 %), 15.55 nC(+1.77 %), 15.51 nC(+1.51 %), 15.42 nC(+0.92 %), 15.39 nC(+0.72 %) respectively. When it was (depth of $D_{max}$ / applicator / pure lead), the relative value(scattering ratio) was 16.70 nC(-10.87 %), 16.84 nC(-10.12 %), 16.72 nC(-10.78 %), 16.88 nC(-9.93 %), 16.90 nC(-9.82 %) respectively. When it was (depth of $D_{max}$ / applicator / alloy lead), the relative value(scattering ratio) was 16.83 nC(-10.19 %), 17.12 nC(-8.64 %), 16.89 nC(-9.87 %), 16.77 nC(-10.51 %), 16.52 nC(-11.85 %) respectively. When it was (depth of $D_{max}$ / phantom / pure lead), the relative value(scattering ratio) was 17.41 nC(-7.10 %), 17.45 nC(-6.88 %), 17.34 nC(-7.47 %), 17.42 nC(-7.04 %), 17.25 nC(-7.95 %) respectively. When it was (depth of $D_{max}$ / phantom / alloy lead), the relative value(scattering ratio) was 17.45 nC(-6.88 %), 17.44 nC(-6.94 %), 17.47 nC(-6.78 %), 17.43 nC(-6.99 %), 17.35 nC(-7.42 %) respectively. Conclusions: When performing electron therapy using a shielding block, the block position should be inserted applicator rather than the patient's body surface. The block thickness should be made to the minimum appropriate shielding thickness of each corresponding using energy. Also it is useful that the treatment should be performed considering the influence of scattering dose varying with distance from the edge of block.

Molecular Cloning of a Gene Encoding a Putative Antibacterial Peptide from Bombyx mori (누에에서 새로운 항세균성 펩타이드 유사 유전자의 분리와 염기서열 결정)

  • 김상현;제연호;윤은영;강석우;김근영;강석권
    • Korean journal of applied entomology
    • /
    • v.35 no.4
    • /
    • pp.321-325
    • /
    • 1996
  • To isolate a novel gene for antibacterial peptide, an inducible clone(BmInc8) was selected by differential screening strategy from Bombyx mori cDNA library prepared from lavae injected with Escherichia coli. This clone contained a cDNA insert of 564 nucleotides and encoded 59 amino acids with an apparent molecular mass of 6.3 kDa. The cDNA sequence of BmInc8 had 61.2% identity compared to that of the bactericidin from Manduca sexta and also the deduced amino acids sequences from this insert had 65% identity compared to that of the cecropin D peptide Hyalophora cecropia. The transient expression assay of this insert using prokaryotic expression vector system revealed that the expressed peptide displayed the antibacterial activity. The cDNA sequence was deposited in GenBank under the accession number U30289.

  • PDF

Production of Coenzyme $Q_{10}$ by Recombinant E. coli Harboring the Decaprenyl Diphosphate Synthase Gene from Sinorhizobium meliloti

  • Seo Myung-Ji;Im Eun-Mi;Hur Jin-Haeng;Nam Jung-Yeon;Hyun Chang-Gu;Pyun Yu-Ryang;Kim Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.933-938
    • /
    • 2006
  • Decaprenyl diphosphate synthase (DPS) is the key enzyme for the production of coenzyme $Q_{10}$ ($CoQ_{10}$). A dps gene from Sinorhizobium meliioti KCCM 11232 (IFO 14782) was isolated by PCR and then cloned in Escherichia coli. DNA sequencing analysis revealed an open reading frame of 1,017 bp encoding a 338-amino-acid protein. The protein was identical at the 98% level to the putative octaprenyl diphosphate synthase (IspB) of S. meliloti 1021. The deduced amino acid sequence included the DDxxD domains conserved in the majority of the prenyl diphosphate synthases. Heterologous expression in E. coli BL21 (DE3) was carried out, and the $CoQ_{10}$ produced was then analyzed by HPLC. E. coli BL21 (DE3) harboring the dps gene from S. melioti produced CoQ$_{10}$ in addition to endogenous coenzyme Q$_8$ (CoQ$_8$), whereas wild-type E. coli BL21 (DE3) host did not have the ability of producing CoQ$_{10}$. The results suggest that the putative dps from S. meliloti KCTC 2353 encoded the DPS.

Fourier Domain Optical Coherence Tomography for Retinal Imaging with 800-nm Swept Source: Real-time Resampling in k-domain

  • Lee, Sang-Won;Song, Hyun-Woo;Kim, Bong-Kyu;Jung, Moon-Youn;Kim, Seung-Hwan;Cho, Jae-Du;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.293-299
    • /
    • 2011
  • In this study, we demonstrated Fourier-domain/swept-source optical coherence tomography (FD/SS-OCT) at a center wavelength of 800 nm for in vivo human retinal imaging. A wavelength-swept source was constructed with a semiconductor optical amplifier, a fiber Fabry-Perot tunable filter, isolators, and a fiber coupler in a ring cavity. Our swept source produced a laser output with a tuning range of 42 nm (779 to 821 nm) and an average power of 3.9 mW. The wavelength-swept speed in this configuration with bidirectionality is 2,000 axial scans per second. In addition, we suggested a modified zero-crossing method to achieve equal sample spacing in the wavenumber (k) domain and to increase the image depth range. FD/SS-OCT has a sensitivity of ~89.7 dB and an axial resolution of 10.4 ${\mu}m$ in air. When a retinal image with 2,000 A-lines/frame is obtained, an acquisition speed of 2.0 fps is achieved.