• Title/Summary/Keyword: 3D-Scanning

Search Result 1,473, Processing Time 0.029 seconds

Gender and Age Differences in Attitude toward 3-D Body Scanning (성별 및 연령에 따른 3차원 인체측정에 대한 태도 비교)

  • Park, Jae-Kyung;Choi, Kueng-Mi;Nam, Yun-Ja;Lee, Yu-Ri
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.8
    • /
    • pp.1244-1254
    • /
    • 2008
  • The purpose of this research is to compare the people’s attitude toward 3-D body scanning by their gender and age in order to provide the application of 3-D body scanning data for new services or products. This study collected questionnaire data from 442 Korean females and 258 Korean males who participated in the 3-D body scanning. The result of this study were as follows: 1. Most people had good feelings for 3-D body scanning. Male respondents were more dissatisfied than female, and teenagers had higher dissatisfaction rate than other age groups for the measurement garment. 2. 80.5% of all respondents had the intention for re-measurement of 3-D body scanning. Male respondents and teenagers had low intention for re-measurement. 3. For the use of 3-D body scanning data, 79.6% said "yes" for making avatar, and 88.3% agreed with the custom made clothes. There was no difference between gender and age for this question. The results of the study will demonstrate how clothing retailers and marketers can use the 3-D body scanning data.

Three-Dimensional Surface Imaging is an Effective Tool for Measuring Breast Volume: A Validation Study

  • Lee, Woo Yeon;Kim, Min Jung;Lew, Dae Hyun;Song, Seung Yong;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • v.43 no.5
    • /
    • pp.430-437
    • /
    • 2016
  • Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods.

Enhancement of 3D Scanning Performance by Correcting the Photometric Distortion of a Micro Projector-Camera System (초소형 카메라-프로젝터의 광학왜곡 보정을 이용한 위상변이 방식 3차원 스캐닝의 성능 향상)

  • Park, Go Gwang;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.219-226
    • /
    • 2013
  • A distortion correction technique is presented to enhance the 3D scanning performance of a micro-size camera-projector system. Recently, several types of micro-size digital projectors and cameras are available. However, there have been few effort to develop a micro-size 3D scanning system. We develop a micro-sized 3D scanning system which is based on the structured light technique. Three images of phase-shifted sinusoidal patterns are projected, captured, and analyzed by the system to reconstruct 3D shapes of very small objects. To overcome inherent optical imperfection of the micro 3D sensor, we correct the vignetting and blooming effects which cause distortions in the phase image. Error analysis and 3D scanning results on small real objects are presented to show the performance of the developed 3D scanning system.

Development of Multi-Laser Vision System For 3D Surface Scanning (3 차원 곡면 데이터 획득을 위한 멀티 레이져 비젼 시스템 개발)

  • Lee, J.H.;Kwon, K.Y.;Lee, H.C.;Doe, Y.C.;Choi, D.J.;Park, J.H.;Kim, D.K.;Park, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.768-772
    • /
    • 2008
  • Various scanning systems have been studied in many industrial areas to acquire a range data or to reconstruct an explicit 3D model. Currently optical technology has been used widely by virtue of noncontactness and high-accuracy. In this paper, we describe a 3D laser scanning system developped to reconstruct the 3D surface of a large-scale object such as a curved-plate of ship-hull. Our scanning system comprises of 4ch-parallel laser vision modules using a triangulation technique. For multi laser vision, calibration method based on least square technique is applied. In global scanning, an effective method without solving difficulty of matching problem among the scanning results of each camera is presented. Also minimal image processing algorithm and robot-based calibration technique are applied. A prototype had been implemented for testing.

  • PDF

Endoscopic Precise 3D Surface Profiler Based on Continuously Scanning Structured Illumination Microscopy

  • Park, Hyo Mi;Joo, Ki-Nam
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.172-178
    • /
    • 2018
  • We propose a precise 3D endoscopic technique for medical and industrial applications. As the 3D measuring principle, the continuously scanning structured illumination microscopy (CSSIM), which enables to obtain 3D sectional images by the synchronous axial scanning of the target with the lateral scanning of the sinusoidal pattern, is adopted. In order to reduce the size of the probe end, the illumination and detection paths of light are designed as coaxial and a coherent imaging fiber bundle is used for transferring the illumination pattern to the target and vice versa. We constructed and experimentally verified the proposed system with a gauge block specimen. As the result, it was confirmed that the 3D surface profile was successfully measured with $16.1{\mu}m$ repeatability for a gauge block specimen. In order to improve the contrast of the sinusoidal illumination pattern reflected off on the target, we used polarizing optical components and confirmed that the visibility of the pattern was suitable in CSSIM.

A collaborative process between employers and practitioners for utilization of BIM and 3D scanning (실무 3D 스캐닝 및 BIM 활용을 위한 발주자 - 실무자 간 협업프로세스 모델)

  • Kim, Do-Young
    • Journal of KIBIM
    • /
    • v.11 no.2
    • /
    • pp.33-42
    • /
    • 2021
  • In construction sites, policies are changing considering the convergence of 3D scanning and BIM. In order to respond to this, it is urgent to develop guidelines for systematic collaboration methods that take into account the perspectives of practitioners. By participating in the delivery process using 3D scanning technology, tasks such as ordering, field scanning are defined in terms of mutual communications. Also, the collaboration process is about communications between off-site and on-site, such as feed-back using data and documents. In the future, we will propose guidelines based on such collaborative process models.

3D Scanning Data Coordination and As-Built-BIM Construction Process Optimization - Utilization of Point Cloud Data for Structural Analysis

  • Kim, Tae Hyuk;Woo, Woontaek;Chung, Kwangryang
    • Architectural research
    • /
    • v.21 no.4
    • /
    • pp.111-116
    • /
    • 2019
  • The premise of this research is the recent advancement of Building Information Modeling(BIM) Technology and Laser Scanning Technology(3D Scanning). The purpose of the paper is to amplify the potential offered by the combination of BIM and Point Cloud Data (PCD) for structural analysis. Today, enormous amounts of construction site data can be potentially categorized and quantified through BIM software. One of the extraordinary strengths of BIM software comes from its collaborative feature, which can combine different sources of data and knowledge. There are vastly different ways to obtain multiple construction site data, and 3D scanning is one of the effective ways to collect close-to-reality construction site data. The objective of this paper is to emphasize the prospects of pre-scanning and post-scanning automation algorithms. The research aims to stimulate the recent development of 3D scanning and BIM technology to develop Scan-to-BIM. The paper will review the current issues of Scan-to-BIM tasks to achieve As-Built BIM and suggest how it can be improved. This paper will propose a method of coordinating and utilizing PCD for construction and structural analysis during construction.

Development of 3D Terrain Processing Platform Using Terrestrial Laser Scanning Data (지상레이저스캐닝 데이터를 활용한 3차원 지반지형 분석 플랫폼 개발)

  • Kim, Seok;Kim, Tae-Yeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.227-228
    • /
    • 2016
  • Terrestrial laser scanning (TLS) technology is being applied to various fields such as the soil volume calculation and the displacement measurement of terrain, tunnels and dams. This study develops a 3D terrain processing platform for automated earth work using a terrestrial laser scanning data as the software prototype. The developed software provides cells with geo-technical information for planning work to an integrated system.

  • PDF

Optimizing Laser Scanner Selection and Installation through 3D Simulation-Based Planning - Focusing on Displacement Measurements of Retaining Wall Structures in Small-scale Buildings -

  • Lee, Gil-yong;Kim, Jun-Sang;Yoou, Geon hee;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.68-82
    • /
    • 2024
  • The planning stage of laser scanning is crucial for acquiring high-quality 3D source data. It involves assessing the target space's environment and formulating an effective measurement strategy. However, existing practices often overlook on-site conditions, with decisions on scanner deployment and scanning locations relying heavily on the operators' experience. This approach has resulted in frequent modifications to scanning locations and diminished 3D data quality. Previous research has explored the selection of optimal scanner locations and conducted preliminary reviews through simulation, but these methods have significant drawbacks. They fail to consider scanner inaccuracies, do not support the use of multiple scanners, rely on less accurate 2D drawings, and require specialized knowledge in 3D modeling and programming. This study introduces an optimization technique for laser scanning planning using 3D simulation to address these issues. By evaluating the accuracy of scan data from various laser scanners and their positioning for scanning a retaining wall structure in a small-scale building, this method aids in refining the laser scanning plan. It enhances the decision-making process for end-users by ensuring data quality and reducing the need for plan adjustments during the planning phase.

An Evaluation on the Accuracy of a 3D Scanning Device Using Spherical Coordinate Mechanisms (구면좌표계식 기구를 이용한 3D 스캐닝 장치의 정밀도 평가)

  • Maeng, Hee-Young;Park, Sangwook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • To improve the efficiency of a reverse engineering process, many researches have recently tried to develop efficient, automatic 3D scanning devices. A new automatic 3D scanning device using a spherical coordinate system mechanism is introduced in this study. This device incorporates a guide motion along the spherical coordinate to compound each 3D data point automatically. The experiments correlating the system assembling tolerance with the form accuracy were conducted to verify the efficiency of the system for the scanning of an object, including complex shapes and manifold sections. In addition, the required time and system accuracy, taken during the scanning process of complicated artifact models, were investigated. Further, based on these empirical results, it was ascertained that the superior productivity of this new device offers a more precise and efficient scan when compared to conventional methodologies.