• Title/Summary/Keyword: 3D-RANS

Search Result 88, Processing Time 0.029 seconds

Numerical Analysis of Dam-break Waves in an L-shaped Channel with a Movable Bed (L자형 이동상수로에서 댐 붕괴파의 수치해석)

  • Kim, Dae-Geun;Hwang, Gun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.291-300
    • /
    • 2012
  • We conducted a three-dimensional numerical simulation by using the FLOW-3D, with RANS as the governing equation, in an effort to track the dam-break wave.immediately after a dam break.in areas surrounding where the dam break took place as well as the bed change caused by the dam-break wave. In particular, we computed the bed change in the movable bed and compared the variation in flood wave induced by the bed change with our analysis results in the fixed bed. The analysis results can be summarized as follows: First, the analysis results on the flood wave in the L-shaped channel and on the flood wave and bed change in the movable-bed channel successfully reproduce the findings of the hydraulic experiment. Second, the concentration of suspended sediment is the highest in the front of the flood wave, and the greatest bed change is observed in the direct downstream of the dam where the water flow changes tremendously. Generated in the upstream of the channel, suspended sediment results in erosion and sedimentation alternately in the downstream region. With the arrival of the flood wave, erosion initially prove predominant in the inner side of the L-shaped bend, but over time, it tends to move gradually toward the outer side of the bend. Third, the flood wave in the L-shaped channel with a movable bed propagates at a slower pace than that in the fixed bed due to the erosion and sedimentation of the bed, leading to a remarkable increase in flood water level.

A FRONTIER OF PARALLEL CFD: REAL-TIME IN-FLIGHT ICING SIMULATION OVER COMPLETE AIRCRAFT

  • Habashi, Wagdi G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.1-1
    • /
    • 2010
  • With the power of supercomputers increasing exponentially, there is an insatiable need for more advanced multi-disciplinary aerospace CFD simulations. A particular current interest is the 3D viscous turbulent simulation of the highly nonlinear aspects of aero-icing. The applications of CFD in that field are literally light-years behind aerodynamics, with a significant number of users still mired in correlations, or 2D, inviscid, incompressible, and, yes, Panel Methods simulations! Thus, the disparity of tools between aerodynamics and icing departments within an organization leads to a disconnect that makes ice protection a downstream isolated process that is not an integral part of the aerodynamic behavior of an aerospace system (aircraft, rotorcraft, jet engine, UAV, etc.). While 3D RANS has been recently introduced, it is still considered computationally too demanding for industry when wide parametric studies for certification are required. In addition, not unlike the situation in aerodynamics say 20 years ago, naysayers are at every corner claiming that CFD is not reliable and is of limited use.

  • PDF

Free Surface Flow in a Trench Channel Using 3-D Finite Volume Method

  • Lee, Kil-Seong;Park, Ki-Doo;Oh, Jin-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.429-438
    • /
    • 2011
  • In order to simulate a free surface flow in a trench channel, a three-dimensional incompressible unsteady Reynolds-averaged Navier-Stokes (RANS) equations are closed with the ${\kappa}-{\epsilon}$ model. The artificial compressibility (AC) method is used. Because the pressure fields can be coupled directly with the velocity fields, the incompressible Navier-Stokes (INS) equations can be solved for the unknown variables such as velocity components and pressure. The governing equations are discretized in a conservation form using a second order accurate finite volume method on non-staggered grids. In order to prevent the oscillatory behavior of computed solutions known as odd-even decoupling, an artificial dissipation using the flux-difference splitting upwind scheme is applied. To enhance the efficiency and robustness of the numerical algorithm, the implicit method of the Beam and Warming method is employed. The treatment of the free surface, so-called interface-tracking method, is proposed using the free surface evolution equation and the kinematic free surface boundary conditions at the free surface instead of the dynamic free surface boundary condition. AC method in this paper can be applied only to the hydrodynamic pressure using the decomposition into hydrostatic pressure and hydrodynamic pressure components. In this study, the boundary-fitted grids are used and advanced each time the free surface moved. The accuracy of our RANS solver is compared with the laboratory experimental and numerical data for a fully turbulent shallow-water trench flow. The algorithm yields practically identical velocity profiles that are in good overall agreement with the laboratory experimental measurement for the turbulent flow.

Near-Field Hydrodynamic Analysis of the Submerged Thermal Discharge Using CFD Model (CFD 모델을 이용한 수중방류 온배수의 근역 동수역학 해석)

  • Hwang, In-Tae;Kim, Deok-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.466-473
    • /
    • 2011
  • The buoyancy and initial momentum fluxes make near-field dominated by buoyant jet when thermal discharge releases underwater. In order to estimate prediction capabilities of those near-field phenomena, non-hydrostatic RANS applied CFD(Computational Fluid Dynamic) model was used. Condition of model was composed based on past laboratory experiments. Numerical simulations carried out for the horizontal buoyant jet in the stagnant flow and vertical buoyant jet into crossflow. The results of simulation are compared with the terms of trajectory and dilution rate of laboratory experiments and analytic model(CorJET) results. CFD model showed a good agreement with them. CFD model can be appropriate for assessment of submerged thermal discharge effect because CFD model can resolve the limitations of near-field analytic model and far-field quasi 3D hydrodynamic model. The accuracy and capability of the CFD model is reviewed in this study. If the computational efficiency get improved, CFD model can be widely applied for simulation of transport and diffusion of submerged thermal discharge.

Numerical wave interaction with tetrapods breakwater

  • Dentale, Fabio;Donnarumma, Giovanna;Carratelli, Eugenio Pugliese
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.800-812
    • /
    • 2014
  • The paper provides some results of a new procedure to analyze the hydrodynamic aspects of the interactions between maritime emerged breakwaters and waves by integrating CAD and CFD. The structure is modeled in the numerical domain by overlapping individual three-dimensional elements (Tetrapods), very much like the real world or physical laboratory testing. Flow of the fluid within the interstices among concrete blocks is evaluated by integrating the RANS equations. The aim is to investigate the reliability of this approach as a design tool. Therefore, for the results' validation, the numerical run-up and reflection effects on virtual breakwater were compared with some empirical formulae and some similar laboratory tests. Here are presented the results of a first simple validation procedure. The validation shows that, at present, this innovative approach can be used in the breakwater design phase for comparison between several design solutions with a significant minor cost.

Development of Computational Methods for Viscous Flow around a Commercial Ship Using Finite-Volume Methods (유한체적법을 이용한 상선주위의 난류유동 계산에 관한 연구)

  • Wu-Joan Kim;Do-Hyun Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.19-30
    • /
    • 2000
  • A finite-volume method is developed to solve turbulent flows around modern commercial hull forms with bow and stern bulbs. The RANS equations are solved. The cell-centered finite-volume method employs QUICK and central difference scheme for convective and diffusive flux discretization, respectively. The SIMPLEC method is adopted for the velocity-pressure coupling. The developed numerical methods are applied to calculate turbulent flow around KRISO 3600TEU container ship. Surface meshes are generated into five blocks: bow and stern bulbs, overhang, fore and afterbody. 3-D field grid system with O-H topology is generated using elliptic grid generation method. Surface friction lines and wake distribution at propeller plane is compared with experiment. The calculated results show that the present method can be used to predict flow around a modern commercial hull forms with bulbs.

  • PDF

Performance Optimization of High Specific Speed Pump-Turbines by Means of Numerical Flow Simulation (CFD) and Model Testing

  • Kerschberger, Peter;Gehrer, Arno
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.352-359
    • /
    • 2010
  • In recent years, the market has shown increasing interest in pump-turbines. The prompt availability of pumped storage plants and the benefits to the power system achieved by peak lopping, providing reserve capacity, and rapid response in frequency control are providing a growing advantage. In this context, there is a need to develop pumpturbines that can reliably withstand dynamic operation modes, fast changes of discharge rate by adjusting the variable diffuser vanes, as well as fast changes from pumping to turbine operation. In the first part of the present study, various flow patterns linked to operation of a pump-turbine system are discussed. In this context, pump and turbine modes are presented separately and different load cases are shown in each operating mode. In order to create modern, competitive pump-turbine designs, this study further explains what design challenges should be considered in defining the geometry of a pump-turbine impeller. The second part of the paper describes an innovative, staggered approach to impeller development, applied to a low head pump-turbine project. The first level of the process consists of optimization strategies based on evolutionary algorithms together with 3D in-viscid flow analysis. In the next stage, the hydraulic behavior of both pump mode and turbine mode is evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Finally, the progress in hydraulic design is demonstrated by model test results that show a significant improvement in hydraulic performance compared to an existing reference design.

Analysis of Hydraulic effect on Removing Side Overflow Type Structures in Woo Ee Stream Basin (우이천 유역의 횡단 월류형 구조물 철거에 의한 수리영향 분석)

  • Moon, Young-Il;Yoon, Sun-Kwon;Chun, Si-Young;Kim, Jong-Suk
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.687-690
    • /
    • 2008
  • Currently, Stream flow analysis has been accomplished by one or two dimensional equations and was applied by simple momentum equations and fixed energy conservations which contain many reach uppermost limit. In this study, FLOW-3D using CFD(Computational Fluid Dynamics) was applied to stream flow analysis which can solve three dimensional RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-\varepsilon$, RNG(Renomalized Group Theory) $k-\varepsilon$ and LES(Large Eddy Simulation). Numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow, water level pressure and eddy flows around the side overflow type structures at Jangwall bridge in urban stream.

  • PDF

Numerical Cavitation Intensity on a Hydrofoil for 3D Homogeneous Unsteady Viscous Flows

  • Leclercq, Christophe;Archer, Antoine;Fortes-Patella, Regiane;Cerru, Fabien
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.254-263
    • /
    • 2017
  • The cavitation erosion remains an industrial issue for many applications. This paper deals with the cavitation intensity, which can be described as the fluid mechanical loading leading to cavitation damage. The estimation of this quantity is a challenging problem both in terms of modeling the cavitating flow and predicting the erosion due to cavitation. For this purpose, a numerical methodology was proposed to estimate cavitation intensity from 3D unsteady cavitating flow simulations. CFD calculations were carried out using Code_Saturne, which enables U-RANS equations resolution for a homogeneous fluid mixture using the Merkle's model, coupled to a $k-{\varepsilon}$ turbulence model with the Reboud's correction. A post-process cavitation intensity prediction model was developed based on pressure and void fraction derivatives. This model is applied on a flow around a hydrofoil using different physical (inlet velocities) and numerical (meshes and time steps) parameters. The article presents the cavitation intensity model as well as the comparison of this model with experimental results. The numerical predictions of cavitation damage are in good agreement with experimental results obtained by pitting test.

CFD modelling of free-flight and auto-rotation of plate type debris

  • Kakimpa, B.;Hargreaves, D.M.;Owen, J.S.;Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.D.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.169-189
    • /
    • 2010
  • This paper describes the use of coupled Computational Fluid Dynamics (CFD) and Rigid Body Dynamics (RBD) in modelling the aerodynamic behaviour of wind-borne plate type objects. Unsteady 2D and 3D Reynolds Averaged Navier-Stokes (RANS) CFD models are used to simulate the unsteady and non-uniform flow field surrounding static, forced rotating, auto-rotating and free-flying plates. The auto-rotation phenomenon itself is strongly influenced by vortex shedding, and the realisable k-epsilon turbulence modelling approach is used, with a second order implicit time advancement scheme and equal or higher order advection schemes for the flow variables. Sequentially coupling the CFD code with a RBD solver allows a more detailed modelling of the Fluid-Structure Interaction (FSI) behaviour of the plate and how this influences plate motion. The results are compared against wind tunnel experiments on auto-rotating plates and an existing 3D analytical model.