• Title/Summary/Keyword: 3D-Image

Search Result 5,135, Processing Time 0.039 seconds

The Utility Evaluation of Reconstructed 3-D Images by Maximum Intensity Projection in Magnetic Resonance Mammography and Cholangiopancreatography

  • Cho, Jae-Hwan;Lee, Hae-Kag;Park, Cheol-Soo;Kim, Ham-Gyum;Baek, Jong-Geun;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.365-371
    • /
    • 2014
  • The aim of this study was to evaluate the utility of 3-D images by comparing and analyzing reconstructed 3-D images from fast spin echo images of MRI cholangiopancreatography (MRCP) images using maximum intensity projection (MIP) with the subtraction images derived from dynamic tests of magnetic resonance mammography. The study targeted 20 patients histologically diagnosed with pancreaticobiliary duct disease and 20 patients showing pancreaticobiliary duct diseases, where dynamic breast MR (magnetic resonance) images, fast spin echo imaged of pancreaticobiliary duct, and 3-D reconstitution images using a 1.5T MR scanner and 3.0T MR scanner were taken. As a result of the study, the signal-to-noise ratio in the subtracted breast image before and after administering the contrast agent and in the reconstructed 3-D breast image showed a high ratio in the reconstructed image of lesional tissue, relevant tissue, and fat tissue. However, no statistically meaningful differences were found in the contrast-to-noise ratio of the two images. In the case of the MRCP image, no differences were found in the ratios of the fast spin echo image and reconstructed 3-D image.

Geometric Snapping for 3D Triangular Meshes and Its Applications (3차원 삼각형 메쉬에 대한 기하학적 스내핑과 그의 응용)

  • 유관희;하종성
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.239-246
    • /
    • 2004
  • Image snapping for an image moves the cursor location to nearby features in the image, such as edges. In this paper, we propose geometric snapping for 3D triangular meshes, which is extended from image snapping. Similar to image snapping, geometric snapping also moves the cursor location naturally to a location which represents main geometric features in the 3D triangular meshes. Movement of cursor is based on the approximate curvatures which appear geometric features on the 3D triangular meshes. The proposed geometric snapping can be applied to extract main geometric features on 3D triangular meshes. Moreover, it can be applied to extract the geometric features of a tooth which are necessary for generating the occlusal surfaces in dental prostheses.

A Monolithic 5 GHz Image Reject Mixer for Wireless LAN applications

  • Ho-Young Kim;Jae-Hyun Cho;Jung-Ho Park
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12B
    • /
    • pp.1733-1740
    • /
    • 2001
  • A monolithic 5 GHz image reject mixer using a 0.5-m GaAs MESFET technology is designed and simulated. The Mixer exhibits a 13.56 dB down-conversion gain, a SSB (Single SideBand) noise figure of 11.91 dB, an input IP3 (third order intercept point) of -3.73 dBm and a PldB (1-dB compression point) of -11.0 dBm. The critical issue in the image reject mixer is the phase accuracy and magnitude balance of the 90 phase shifting network. The proposed image reject mixer realizes a 90 phase shifter on chip. This phase shifting network does not need any phase adjusting to achieve the phase error specification of 3 over a frequency range from 800 MHz to 1GHz. The simulated overall image rejection ratio is better than 50 dB.

  • PDF

3D Augmented Reality Streaming System Based on a Lamina Display

  • Baek, Hogil;Park, Jinwoo;Kim, Youngrok;Park, Sungwoong;Choi, Hee-Jin;Min, Sung-Wook
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • We propose a three-dimensional (3D) streaming system based on a lamina display that can convey field information in real-time by creating floating 3D images that can satisfy the accommodation cue. The proposed system is mainly composed of three parts, namely: a 3D vision camera unit to obtain and provide RGB and depth data in real-time, a 3D image engine unit to realize the 3D volume with a fast response time by using the RGB and depth data, and an optical floating unit to bring the implemented 3D image out of the system and consequently increase the sense of presence. Furthermore, we devise the streaming method required for implementing augmented reality (AR) images by using a multilayered image, and the proposed method for implementing AR 3D video in real-time non-face-to-face communication has been experimentally verified.

3-D Image Processing Using Laser Slit Beam and Neural Networks (레이저 슬릿빔과 신경망을 이용한 3차원 영상인식)

  • 김병갑;강이석;최경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.118-122
    • /
    • 1997
  • This paper presents a 3d image processing which uses neural networks to combine a 2D vision camera and a laser slit beam. A laser slit beam from laser source is slitted by a set of cylindrical lenses and the line image of the slit beam on the object is used to estimate the object parameters. The neural networks allow to get the 3D image parameters such as the size, the position and the orientation form the line image without knowing the camera intrinsic parameters.

  • PDF

Fabrication of Infrared Filters for Three-Dimensional CMOS Image Sensor Applications

  • Lee, Myung Bok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.341-344
    • /
    • 2017
  • Infrared (IR) filters were developed to implement integrated three-dimensional (3D) image sensors that are capable of obtaining both color image and depth information at the same time. The combination of light filters applicable to the 3D image sensor is composed of a modified IR cut filter mounted on the objective lens module and on-chip filters such as IR pass filters and color filters. The IR cut filters were fabricated by inorganic $SiO_2/TiO_2$ multilayered thin-film deposition using RF magnetron sputtering. On-chip IR pass filters were synthetized by dissolving various pigments and dyes in organic solvents and by subsequent patterning with photolithography. The fabrication process of the filters is fairly compatible with the complementary metal oxide semiconductor (CMOS) process. Thus, the IR cut filter and IR pass filter combined with conventional color filters are considered successfully applicable to 3D image sensors.

3-DIMENSIONAL TILING TECHNIQUE TO PROCESS HUGE SIZE HIGH RESOLUTION SATELLITE IMAGE SEAMLESSLY AND RAPIDLY

  • Jung, Chan-Gyu;Kim, Jun-Chul;Hwang, Hyun-Deok
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.85-89
    • /
    • 2007
  • This paper presents the method to provide a fast service for user in image manipulation such as zooming and panning of huge size high resolution satellite image (e.g. Giga bytes per scene). The proposed technique is based on the hierarchical structure that has 3D-Tiling in horizontal and vertical direction to provide the image service more effectively than 2D-Tiling technique in the past does. The essence of the proposed technique is to create tiles that have optimum level of horizontal as well as vertical direction on the basis of current displaying area which changes as user manipulates huge image. So this technique provides seamless service, and will be very powerful and useful for manipulation of images of huge size without data conversion.

  • PDF

3-Dimensional Tiling Technique to Process Huge Size High Resolution Satellite Image Seamlessly and Rapidly

  • Kim, Jun-Chul;Jung, Chan-Gyu;Kim, Moon-Gyu
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.375-383
    • /
    • 2007
  • This paper presents the method to provide a fast service for user in image manipulation such as zooming and panning of huge size high resolution satellite image(e.g. Giga bytes per scene). The proposed technique is based on the hierarchical structure that has 3D-Tiling in horizontal and vertical direction to provide the image service more effectively than 2D-Tiling technique in the past does. The essence of the proposed technique is to create tiles of optimum level in real time on the basis of current displaying area, which change as user manipulates huge image. Consequently, this technique provides seamless service, and will be very powerful and useful for manipulation of images of huge size without data conversion.

Crosstalk Reduction of Glasses-free 3D Displays using Multiview Image Processing (다시점 영상처리를 이용한 무안경 3차원 디스플레이의 크로스톡 저감 방법)

  • Kim, Sung-Yeol;Lee, Jin-Sung;Choi, Sang Mi
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.66-75
    • /
    • 2016
  • In this paper, we present a new method to reduce crosstalk of a glasses-free three-dimensional (3D) display using a multi-view image processing technique. Since crosstalk makes the current view image mixed with its neighboring ones, the output 3D image becomes severely blurred. We apply adaptive depth retargeting and view gradient-based crosstalk inverse filtering onto a multi-view image to minimize crosstalk of the glasses-free 3D display. In addition, overflow and underflow pixels are compensated by epipolar image pixel interpolation so that visual artifacts are minimized. Experimental results show that the proposed method reduces crosstalk more efficiently than the previous work while improving 3D image quality.

자가 치아 이식술에 사용되는 Computer Aided Rapid Prototyping model(CARP model)의 실제 치아에 대한 오차

  • Lee, Seong-Jae;Kim, Ui-Seong;Kim, Gi-Deok;Lee, Seung-Jong
    • The Journal of the Korean dental association
    • /
    • v.44 no.2 s.441
    • /
    • pp.115-122
    • /
    • 2006
  • Objective : The purpose of this study was to evaluate the dimensional errors between real tooth, 3D CT image and CARP model. Materials and Methods : Two maxilla and two mandible block bones with intact teeth were taken from two cadavers. Computed tomography was taken either in dry state and in wet state. After then, all teeth were extracted and the dimensions of the real teeth were measured using a digital caliper at mesio-distal and bucco-lingual width both in crown and cervical portion. 3D CT image was generated using the V-works $4.0^{TM}$ (Cybemed Inc., Seoul, Korea) software. Twelve teeth were randomly selected for CARP model fabrication. All the measurements of 3D Ct images and CARP models were made in the same manner of the real tooth group. Dimensional errors between real tooth, 3D CT image model and CARP model was calculated. Results : 1) Average of absolute error was 0.199 mm between real teeth and 3D CT image model, 0.169 mm between 3D CT image model and CARP model and 0.291 mm between real teeth and CARP model, respectively. 2) Average size of 3D CT image was smaller than real teeth by 0.149 mm and that of CARP model was smalier than 3D CT image model by 0.067mm. Conclusion : Within the scope of this study, CARP model with the 0.291 mm average of absolute eror can aid to enhance the success rate cf autogenous tooth transplantation due to the increased accuracy of recipient bone and donor tooth.

  • PDF