• Title/Summary/Keyword: 3D-Conformal Radiotherapy

Search Result 94, Processing Time 0.021 seconds

Initial Experience for 3-D Conformal Boost Treatments in Carcinoma of the Nasopharynx (비인강암환자에서 시행한 3차원 입체조형 방사선치료의 조기 임상결과)

  • Jang Ji-Young;Cho Moon-June;Kim Ki-Hwan;Song Chang-Joon;Kim Byoung-Kook;Kim Jun-Sang;Kim Jae-Sung
    • Korean Journal of Head & Neck Oncology
    • /
    • v.16 no.2
    • /
    • pp.172-176
    • /
    • 2000
  • Objectives: To improve local control and reduce toxicity, 3-D conformal radiotherapy was used as a boost the primary tumor site following fractionated radiotherapy in patients with nasopharyngeal carcinoma. Materials and Methods: Eight patients with previously untreated nasopharyngeal carcinomas were treated with 3-D conformal radiotherapy following fractionated radiotherapy from September 1998 to April 2000. All patients had biopsy confirmation of disease before radiation therapy. Stages were II in 1, III in 5, and IV in 2. Two patients received cisplatin based chemotherapy in addition to radiation therapy; induction chemotherapy in 1, concurrent chemoradiation in 1. 3-D conformal radiotherapy delivered using 6MV Linac as a boost(range 25.2-28.8Gy, median 25.7Gy) following conventionally fractionated radiotherapy(range 50.4Gy). Average total dose ranged from 75.6-79.2Gy(median 76Gy). Follow-up time was 4-21 months(median 9.6 months). Results: Seven of 8 patients were evaluated radiologically within 3 months after completion of radiation therapy. All 7 patients were seen complete remission. One of 7 patients had distant metastasis after 5 months and local failure after 7 months. The tree interval of local recurrence was ranged from 4 - 21 months(median 10.2 months). One patient without radiological evaluation got complete remission clinically. Treatment related toxicity was grade 1-3 xerostomia, dysphagia, and mucositis. During 3-D conformal radiotherapy, there was no aggravation of any toxicity. Conclusion: Although the number of patients was small and follow-up period was short, 3-D conformal radiotherapy following conventional radiotherapy improved tumor control and dose escalation without increased toxicity. Survival and late toxicity should be evaluated through long term follow-up. In addition, it is necessary to confirm the benefits of 3-D conformal radiotherapy in nasopharyngeal carcinoma with randomized trial.

  • PDF

Phase II Study of Docetaxel (Aisu) Combined with Three-dimensional Conformal External Beam Radiotherapy in Treating Patients with Inoperable Esophageal Cancer

  • Shen, Kang;Huang, Xin-En;Lu, Yan-Yan;Wu, Xue-Yan;Liu, Jin;Xiang, Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6523-6526
    • /
    • 2012
  • Objective: This study was designed to investigate treatment efficacy and side effects of concomitant Aisu$^{(R)}$ (docetaxel) with three-dimensional conformal external beam radiotherapy for the treatment of inoperable patients with esophageal cancer. Methods: Inoperable patients were treated with three-dimensional conformal external beam radiotherapy (5/week, 2 GY/day, and total dose 60GY) plus docetaxel ($30-45mg/m^2$, iv, d1, 8). Results: Twenty eight patients met the study eligibility criteria and the response rate was evaluated according to RICIST guidelines. Among 28 patients, 2 achieved CR, 22 PR, 3 SD and 1 patient was documented PD. Mild gastrointestinal reaction and bone marrow suppression were also documented. All treatment related side effects were tolerable. Conclusion: Three-dimensional conformal external beam radiotherapy combined with docetaxel is an active and safe regimen for inoperable patients with esophageal cancer.

Dosimetric Evaluation of 3-D Conformal and Intensity-modulated Radiotherapy for Breast Cancer after Conservative Surgery

  • Mansouri, Safae;Naim, Asmaa;Glaria, Luis;Marsiglia, Hugo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4727-4732
    • /
    • 2014
  • Background: Breast cancers are becoming more frequently diagnosed at early stages with improved long term outcomes. Late normal tissue complications induced by radiotherapy must be avoided with new breast radiotherapy techniques being developed. The aim of the study was to compare dosimetric parameters of planning target volume (PTV) and organs at risk between conformal (CRT) and intensity-modulated radiation therapy (IMRT) after breast-conserving surgery. Materials and Methods: A total of 20 patients with early stage left breast cancer received adjuvant radiotherapy after conservative surgery, 10 by 3D-CRT and 10 by IMRT, with a dose of 50 Gy in 25 sessions. Plans were compared according to dose-volume histogram analyses in terms of PTV homogeneity and conformity indices as well as organs at risk dose and volume parameters. Results: The HI and CI of PTV showed no difference between 3D-CRT and IMRT, V95 gave 9.8% coverage for 3D-CRT versus 99% for IMRT, V107 volumes were recorded 11% and 1.3%, respectively. Tangential beam IMRT increased volume of ipsilateral lung V5 average of 90%, ipsilateral V20 lung volume was 13%, 19% with IMRT and 3D-CRT respectively. Patients treated with IMRT, heart volume encompassed by 60% isodose (30 Gy) reduced by average 42% (4% versus 7% with 3D-CRT), mean heart dose by average 35% (495cGy versus 1400 cGy with 3D-CRT). In IMRT minimal heart dose average is 356 cGy versus 90cGy in 3D-CRT. Conclusions: IMRT reduces irradiated volumes of heart and ipsilateral lung in high-dose areas but increases irradiated volumes in low-dose areas in breast cancer patients treated on the left side.

Development of Model Plans in Three Dimensional Conformal Radiotherapy for Brain Tumors (뇌종양 환자의 3차원 입체조형 치료를 위한 뇌내 주요 부위의 모델치료계획의 개발)

  • Pyo Hongryull;Lee Sanghoon;Kim GwiEon;Keum Kichang;Chang Sekyung;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • Purpose : Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this technique to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plant for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site of brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decide. Materials and Methods : Imaginary tumors, with sizes commonly observed in the clinic, were designed for each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal $tumor-5.7\times8.2\times7.6\;cm$, suprasellar $tumor-3\times4\times4.1\;cm$, thalamic $tumor-3.1\times5.9\times3.7\;cm$, frontoparietal $tumor-5.5\times7\times5.5\;cm$, and occipitoparietal $tumor-5\times5.5\times5\;cm$. Plans using paralled opposed 2 portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed using beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were compared with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain was selected. Results : 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D $plans:27\%,\;8\%\rightarrow\;3D\;plans:1\%,\;1\%$). Various dose statistic values did not show any consistent trend. A 3D plan using 3 noncoplanar portals was selected as a model radiotherapy plan. 2) Suprasellar tumor; NTCPs of all 3D plans and 2D plans did not show significant difference because the total dose of this tumor was only 54 Gy. DVHs of normal brain and brainstem were significantly different for different plans. D5, V85, V95 and mean values showed some consistent trend that was compatible with DVH. All 3D plans were superior to 2D plans even when 3 portals (fronto-vertex and 2 lateral fields) were used for 2D plans. A 3D plan using 7 portals was worse than plans using fewer portals. A 3D plan using 5 noncoplanar portals was selected as a model plan. 3) Thalamic tumor; NTCPs of all 3D plans were lower than the 2D plans when the total dose was elevated to 72 Gy. DVHs of normal tissues showed similar results. V83, V85, V95 showed some consistent differences between plans but not between 3D plans. 3D plans using 5 noncoplanar portals were selected as a model plan. 4) Parietal (fronto- and occipito-) tumors; all NTCPs of the normal brain in 3D plans were lower than in 2D plans. DVH also showed the same results. V83, V85, V95 showed consistent trends with NTCP and DVH. 3D plans using 5 portals for frontoparietal tumor and 6 portals for occipitoparietal tumor were selected as model plans. Conclusion : NTCP and DVH showed reasonable differences between plans and were through to be useful for comparing plans. All 3D plans were superior to 2D plans. Best 3D plans were selected for tumors in each site of brain using NTCP, DVH and finally by the planner's decision.

Evaluation of the hybrid-dynamic conformal arc therapy technique for radiotherapy of lung cancer

  • Kim, Sung Joon;Lee, Jeong Won;Kang, Min Kyu;Kim, Jae-Chul;Lee, Jeong Eun;Park, Shin-Hyung;Kim, Mi Young;Lee, Seoung-Jun;Moon, Soo-Ho;Ko, Byoung-Soo
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.241-247
    • /
    • 2018
  • Purpose: A hybrid-dynamic conformal arc therapy (HDCAT) technique consisting of a single half-rotated dynamic conformal arc beam and static field-in-field beams in two directions was designed and evaluated in terms of dosimetric benefits for radiotherapy of lung cancer. Materials and Methods: This planning study was performed in 20 lung cancer cases treated with the VERO system (BrainLAB AG, Feldkirchen, Germany). Dosimetric parameters of HDCAT plans were compared with those of three-dimensional conformal radiotherapy (3D-CRT) plans in terms of target volume coverage, dose conformity, and sparing of organs at risk. Results: HDCAT showed better dose conformity compared with 3D-CRT (conformity index: 0.74 ± 0.06 vs. 0.62 ± 0.06, p < 0.001). HDCAT significantly reduced the lung volume receiving more than 20 Gy (V20: 21.4% ± 8.2% vs. 24.5% ± 8.8%, p < 0.001; V30: 14.2% ± 6.1% vs. 15.1% ± 6.4%, p = 0.02; V40: 8.8% ± 3.9% vs. 10.3% ± 4.5%, p < 0.001; and V50: 5.7% ± 2.7% vs. 7.1% ± 3.2%, p < 0.001), V40 and V50 of the heart (V40: 5.2 ± 3.9 Gy vs. 7.6 ± 5.5 Gy, p < 0.001; V50: 1.8 ± 1.6 Gy vs. 3.1 ± 2.8 Gy, p = 0.001), and the maximum spinal cord dose (34.8 ± 9.4 Gy vs. 42.5 ± 7.8 Gy, p < 0.001) compared with 3D-CRT. Conclusions: HDCAT could achieve highly conformal target coverage and reduce the doses to critical organs such as the lung, heart, and spinal cord compared to 3D-CRT for the treatment of lung cancer patients.

Dosimetric Comparison between Intensity Modulated Radiotherapy and 3 Dimensional Conformal Radiotherapy in the Treatment of Rectal Cancer

  • Simson, David K;Mitra, Swarupa;Ahlawat, Parveen;Sharma, Manoj Kumar;Yadav, Girigesh;Mishra, Manindra Bhushan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4935-4937
    • /
    • 2016
  • Objective: To compare dosimetric parameters of 3 dimensional conformal radiotherapy (3 DCRT) and intensity modulated radiotherapy (IMRT) in terms of target coverage and doses to organs at risk (OAR) in the management of rectal carcinoma. Methods: In this prospective study, conducted between August 2014 and March 2016, all patients underwent CT simulation along with a bladder protocol and target contouring according to the Radiation Therapy Oncology Group (RTOG) guidelines. Two plans were made for each patient (3 DCRT and IMRT) for comparison of target coverage and OAR. Result: A total of 43 patients were recruited into this study. While there were no significant differences in mean Planning Target Volume (PTV) D95% and mean PTV D98% between 3 DCRT and IMRT, mean PTV D2% and mean PTV D50% were significantly higher in 3 DCRT plans. Compared to IMRT, 3 DCRT resulted in significantly higher volumes of hot spots, lower volumes of cold spots, and higher doses to the entire OAR. Conclusion: This study demonstrated that IMRT achieves superior normal tissue avoidance (bladder and bowel) compared to 3 DCRT, with comparable target dose coverage.

Dosimetric Comparison of Three-Dimensional Conformal, Intensity-Modulated Radiotherapy, Volumetric Modulated Arc Therapy, and Dynamic Conformal Arc Therapy Techniques in Prophylactic Cranial Irradiation

  • Ismail Faruk Durmus;Dursun Esitmez;Guner Ipek Arslan;Ayse Okumus
    • Progress in Medical Physics
    • /
    • v.34 no.4
    • /
    • pp.41-47
    • /
    • 2023
  • Purpose: This study aimed to dosimetrically compare the technique of three-dimensional conformal radiotherapy (3D CRT), which is a traditional prophylactic cranial irradiation method, and the intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques used in the last few decades with the dynamic conformal arc therapy (DCAT) technique. Methods: The 3D CRT, VMAT, IMRT, and DCAT plans were prepared with 25 Gy in 10 fractions in a Monaco planning system. The target volume and the critical organ doses were compared. A comparison of the body V2, V5, and V10 doses, monitor unit (MU), and beam on-time values was also performed. Results: In planned target volume of the brain (PTVBrain), the highest D99 dose value (P<0.001) and the most homogeneous (P=0.049) dose distribution according to the heterogeneity index were obtained using the VMAT technique. In contrast, the lowest values were obtained using the 3D CRT technique in the body V2, V5, and V10 doses. The MU values were the lowest when DCAT (P=0.001) was used. These values were 0.34% (P=0.256) lower with the 3D CRT technique, 66% (P=0.001) lower with IMRT, and 72% (P=0.001) lower with VMAT. The beam on-time values were the lowest with the 3D CRT planning (P<0.001), 3.8% (P=0.008) lower than DCAT, 65% (P=0.001) lower than VMAT planning, and 76% (P=0.001) lower than IMRT planning. Conclusions: Without sacrificing the homogeneous dose distribution and the critical organ doses in IMRTs, three to four times less treatment time, less low-dose volume, less leakage radiation, and less radiation scattering could be achieved when the DCAT technique is used similar to conventional methods. In short, DCAT, which is applicable in small target volumes, can also be successfully planned in large target volumes, such as the whole-brain.

Clinical Observation of Three Dimensional Conformal Radiotherapy with Tamoxifen in Treatment of Postoperative Malignant Glioma

  • Zhou, Shao-Bing;Liu, Yang-Chen;Yin, Xiao-Xiang;Ding, Wen-Xiu;Guo, Xin-Wei;Gu, Liang;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1743-1745
    • /
    • 2015
  • Objective: To evaluate the efficacy and adverse effects of three dimensional conformal radiotherapy (3D-CRT) with tamoxifen in treating patients with postoperative malignant glioma. Patients and Methods: 60 patients of postoperative malignant glioma were randomly assigned into two groups, 30 patients were treated with 3D-CRT plus tamoxifen (treatment group), and the other 30 patients with 3D-CRT plus temozolomide (control group). All patients were radiated by 6MV X-ray, 2.0Gy per fraction, once daily, with a total dose (DT) of 56~60Gy. Tamoxifen was delivered at $60mg/m^2/d$, temozolomide was given at $75mg/m^2/d$. All patients were treated with concurrent radiotherapy. Results: One, 2, 3 year survival rates of treatment and control group were 63.3%, 30.0%, 23.0% and 70.0%, 33.3%, 26.7%, respectively (${\chi}^2=0.01$, 0.23, 0.09, P>0.05). The rate of thromboembolism in treatment group was 6.7%. Conclusion: Therapeutic efficacy of two groups was similar, but it was more cost-effective in treatment group, and toxicity did not increase.

Dosimetric comparison of axilla and groin radiotherapy techniques for high-risk and locally advanced skin cancer

  • Mattes, Malcolm D.;Zhou, Ying;Berry, Sean L.;Barker, Christopher A.
    • Radiation Oncology Journal
    • /
    • v.34 no.2
    • /
    • pp.145-155
    • /
    • 2016
  • Purpose: Radiation therapy targeting axilla and groin lymph nodes improves regional disease control in locally advanced and high-risk skin cancers. However, trials generally used conventional two-dimensional radiotherapy (2D-RT), contributing towards relatively high rates of side effects from treatment. The goal of this study is to determine if three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or volumetric-modulated arc therapy (VMAT) may improve radiation delivery to the target while avoiding organs at risk in the clinical context of skin cancer regional nodal irradiation. Materials and Methods: Twenty patients with locally advanced/high-risk skin cancers underwent computed tomography simulation. The relevant axilla or groin planning target volumes and organs at risk were delineated using standard definitions. Paired t-tests were used to compare the mean values of several dose-volumetric parameters for each of the 4 techniques. Results: In the axilla, the largest improvement for 3D-CRT compared to 2D-RT was for homogeneity index (13.9 vs. 54.3), at the expense of higher lung $V_{20}$ (28.0% vs. 12.6%). In the groin, the largest improvements for 3D-CRT compared to 2D-RT were for anorectum $D_{max}$ (13.6 vs. 38.9 Gy), bowel $D_{200cc}$ (7.3 vs. 23.1 Gy), femur $D_{50}$ (34.6 vs. 57.2 Gy), and genitalia $D_{max}$ (37.6 vs. 51.1 Gy). IMRT had further improvements compared to 3D-CRT for humerus $D_{mean}$ (16.9 vs. 22.4 Gy), brachial plexus $D_5$ (57.4 vs. 61.3 Gy), bladder $D_5$ (26.8 vs. 36.5 Gy), and femur $D_{50}$ (18.7 vs. 34.6 Gy). Fewer differences were observed between IMRT and VMAT. Conclusion: Compared to 2D-RT and 3D-CRT, IMRT and VMAT had dosimetric advantages in the treatment of nodal regions of skin cancer patients.

Retrospective analysis of intensity-modulated radiotherapy and three-dimensional conformal radiotherapy of postoperative treatment for biliary tract cancer

  • Lee, Hyo Chun;Lee, Jong Hoon;Lee, Sea-Won;Lee, Joo Hwan;Yu, Mina;Jang, Hong Seok;Kim, Sung Hwan
    • Radiation Oncology Journal
    • /
    • v.37 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • Purpose: This study was conducted to compare the outcome of three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for the postoperative treatment of biliary tract cancer. Materials and Methods: From February 2008 to June 2016, 57 patients of biliary tract cancer treated with curative surgery followed by postoperative 3D-CRT (n = 27) or IMRT (n = 30) were retrospectively enrolled. Results: Median follow-up time was 23.6 months (range, 5.2 to 97.6 months) for all patients and 38.4 months (range, 27.0 to 89.2 months) for survivors. Two-year recurrence-free survival is higher in IMRT arm than 3D-CRT arm with a marginal significance (25.9% vs. 47.4%; p = 0.088). Locoregional recurrence-free survival (64.3% vs. 81.7%; p = 0.122) and distant metastasis-free survival (40.3% vs. 55.8%; p = 0.234) at two years did not show any statistical difference between two radiation modalities. In the multivariate analysis, extrahepatic cholangiocarcinoma, poorly-differentiated histologic grade, and higher stage were significant poor prognostic factors for survival. Severe treatment-related toxicity was not significantly different between two arms. Conclusions: IMRT showed comparable results with 3D-CRT in terms of recurrence, and survival, and radiotherapy toxicity for the postoperative treatment of biliary tract cancer.