• 제목/요약/키워드: 3D theory of elasticity

검색결과 65건 처리시간 0.027초

On the stability of isotropic and composite thick plates

  • Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.551-568
    • /
    • 2019
  • This proposed project presents the bi-axial and uni-axial stability behavior of laminated composite plates based on an original three variable "refined" plate theory. The important "novelty" of this theory is that besides the inclusion of a cubic distribution of transverse shear deformations across the thickness of the structure, it treats only three variables such as conventional plate theory (CPT) instead five as in the well-known theory of "first shear deformation" (FSDT) and theory of "higher order shear deformation" (HSDT). A "shear correction coefficient" is therefore not employed in the current formulation. The computed results are compared with those of the CPT, FSDT and exact 3D elasticity theory. Good agreement is demonstrated and proved for the present results with those of "HSDT" and elasticity theory.

3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement

  • Hoque, M.;Rattanawangcharoen, N.;Shah, A.H.;Desai, Y.M.
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.135-156
    • /
    • 2007
  • Three 3D nonlinear finite-element models are developed to study the behavior of concrete beams and plates with and without external reinforcement by fibre-reinforced plastic (FRP). All three models are formulated based upon the 3D theory of elasticity. The stress model is modified from the element developed by Ramtekkar, et al. (2002) to incorporate material nonlinearity in the formulation. Both transverse stress and displacement components are used as nodal degrees-of-freedom to ensure the continuity of both stress and displacement components between the elements. The displacement model uses only displacement components as nodal degrees-of-freedom. The transition model has both stress and displacement components as nodal degrees-of-freedom on one surface, and only displacement components as nodal degrees-of-freedom on the opposite surface. The transition model serves as a connector between the stress and the displacement models. The developed models are validated by comparing the results of the analyses with an existing experimental result. Parametric studies of the effects of the externally reinforced FRP on the load capacity of reinforced concrete (RC) beams and concrete plates are performed to demonstrate the practicality and the efficiency of the proposed models.

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Mahesh, Vinyas
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.223-231
    • /
    • 2019
  • In this article the frequency response of magneto-flexo-electric rotary porous (MFERP) nanobeams subjected to thermal loads has been investigated through nonlocal strain gradient elasticity theory. A quasi-3D beam model beam theory is used for the expositions of the displacement components. With the aid of Hamilton's principle, the governing equations of MFERP nanobeams are obtained. Further, administrating an analytical solution the frequency problem of MFERP nanobeams are solved. In addition the numerical examples are also provided to evaluate the effect of nonlocal strain gradient parameter, hygro thermo environment, flexoelectric effect, in-plane magnet field, volume fraction of porosity and angular velocity on the dimensionless eigen frequency.

Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.77-87
    • /
    • 2020
  • By employing a quasi-3D plate formulation, the present research studies static stability of magneto-electro-thermo-elastic functional grading (METE-FG) nano-sized plates. Accordingly, influences of shear deformations as well as thickness stretching have been incorporated. The gradation of piezo-magnetic and elastic properties of the nano-sized plate have been described based on power-law functions. The size-dependent formulation for the nano-sized plate is provided in the context of nonlocal elasticity theory. The governing equations are established with the usage of Hamilton's rule and then analytically solved for diverse magnetic-electric intensities. Obtained findings demonstrate that buckling behavior of considered nanoplate relies on the variation of material exponent, electro-magnetic field, nonlocal coefficient and boundary conditions.

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

A new quasi-3D plate theory for free vibration analysis of advanced composite nanoplates

  • Smain, Bezzina;Aicha, Bessaim;Mohammed Sid Ahmed, Houari;Marc, Azab
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.839-850
    • /
    • 2022
  • This paper presents an analytical solution to study the combined effect of non-local and stretching effect on the vibration of advanced functionally graded (FG) nanoplates. A new quasi-3D plate theory is presented; there are only five unknowns and any shear correction factor is used. A new displacement field with a new shear warping function is proposed. The equilibrium equations of the FG nanoplates are obtained using the Hamilton principle and solved numerically using the Navier technique. The material properties of functionally graded nanoplates are presumed to change according to the power-law distribution of ceramic and metal constituents. The numerical results of this work are compared with those of other published results to indicate the accuracy and convergence of this theory. Hence, a profound parameterstudy is also performed to show the influence of many parameters of the functionally graded nanoplates on the free vibration responses is investigated.

Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter

  • Houari, Mohammed Sid Ahmed;Bessaim, Aicha;Bernard, Fabrice;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.13-24
    • /
    • 2018
  • A size-dependent novel hyperbolic shear deformation theory of simply supported functionally graded beams is presented in the frame work of the non-local strain gradient theory, in which the stress accounts for only the nonlocal strain gradients stress field. The thickness stretching effect (${\varepsilon}_z{\neq}0$) is also considered here. Elastic coefficients and length scale parameter are assumed to vary in the thickness direction of functionally graded beams according to power-law form. The governing equations are derived using the Hamilton principle. The closed-form solutions for exact critical buckling loads of nonlocal strain gradient functionally graded beams are obtained using Navier's method. The derived results are compared with those of strain gradient theory.

3-D Vibration analysis of FG-MWCNTs/Phenolic sandwich sectorial plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.649-662
    • /
    • 2018
  • In this study, based on the three-dimensional theory of elasticity, free vibration characteristics of sandwich sectorial plates with multiwalled carbon nanotube-(MWCNT)-reinforced composite core are considered. Modified Halpin-Tsai equation is used to evaluate the Young's modulus of the MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. In this paper, free vibration of thick functionally graded sandwich annular sectorial plates with simply supported radial edges and different circular edge conditions including simply supported-clamped, clamped-clamped, and free-clamped is investigated. A semi-analytical approach composed of two-dimensional differential quadrature method and series solution are adopted to solve the equations of motion. The material properties change continuously through the core thickness of the plate, which can vary according to a power-law, exponentially, or any other formulations in this direction. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated sectorial plates.

The refined theory of 2D quasicrystal deep beams based on elasticity of quasicrystals

  • Gao, Yang;Yu, Lian-Ying;Yang, Lian-Zhi;Zhang, Liang-Liang
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.411-427
    • /
    • 2015
  • Based on linear elastic theory of quasicrystals, various equations and solutions for quasicrystal beams are deduced systematically and directly from plane problem of two-dimensional quasicrystals. Without employing ad hoc stress or deformation assumptions, the refined theory of beams is explicitly established from the general solution of quasicrystals and the Lur'e symbolic method. In the case of homogeneous boundary conditions, the exact equations and exact solutions for beams are derived, which consist of the fourth-order part and transcendental part. In the case of non-homogeneous boundary conditions, the exact governing differential equations and solutions under normal loadings only and shear loadings only are derived directly from the refined beam theory, respectively. In two illustrative examples of quasicrystal beams, it is shown that the exact or accurate analytical solutions can be obtained in use of the refined theory.