• Title/Summary/Keyword: 3D surface model

Search Result 1,217, Processing Time 0.026 seconds

Numerical Analysis of Eddy Currant Testing with Three Dimensional cracked Pipe by using Finte Element Method (유한요소법을 이용한 3차원 관결함의 와전류탐상 수치해석)

  • Won, Sung-Yean;Lee, Hyang-Beom;Shin, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.220-222
    • /
    • 1999
  • This paper presents a numerical analysis of the eddy current testing with cracked pipe using finite element method (FEM). ${\vec{A}},\;{\phi}-{\vec{A}}$ method is adopted for the formulation of 3-dimensional(3-D) FEM with the brick element. The cracks investigated here are the inner and outer surface of axial symmetry, 90 degree circular one. The algorithm of 3-D numerical analysis is employed for the axisymmetric pipe with the cracks. In order to verify the validity of 3-D numerical analysis, the results are compared with those of 2-D analysis with the same type of the model. The differential impedance is obtained by using energy method and its locus are various 8-shaped curves for each cracks. The ICCG method is used for the calculation of a matrix.

  • PDF

Data Acquisition and Processing of 3D Object (3차원 물체의 데이터 획득 및 가공)

  • Yi, Kyoung-Woong;Choi, Han-Su;Kim, Nam-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.83-87
    • /
    • 2002
  • Accurate acquisition of surface geometries such as machined surfaces, biological surfaces, and deformed parts and processing 3D object have been very important technique in scientific study and engineering, expecially for system design, manufacturing and inspection. Defective human teeth are usually ground to be coped with special alloy coping which is hand-made by dental technician. This make dental technician to be difficult and take a long time Dental CAD/CAM Systems consist of two parts, data acquisition and milling. In this paper, a method is studied to mill object which is acquired 3D geometric data of the small object such as a die in stone model. This paper present a control program and a mechanical system for milling 3D object.

  • PDF

Geomechanical and hydrogeological validation of hydro-mechanical two-way sequential coupling in TOUGH2-FLAC3D linking algorithm with insights into the Mandel, Noordbergum, and Rhade effects

  • Lee, Sungho;Park, Jai-Yong;Kihm, Jung-Hwi;Kim, Jun-Mo
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.437-454
    • /
    • 2022
  • The hydro-mechanical (HM) two-way sequential coupling in the TOUGH2-FLAC3D linking algorithm is validated completely and successfully in both M to H and H to M directions, which are initiated by mechanical surface loading for geomechanical validation and hydrological groundwater pumping for hydrogeological validation, respectively. For such complete and successful validation, a TOUGH2-FLAC3D linked numerical model is developed first by adopting the TOUGH2-FLAC3D linking algorithm, which uses the two-way (fixed-stress split) sequential coupling scheme and the implicit backward time stepping method. Two geomechanical and two hydrogeological validation problems are then simulated using the linked numerical model together with basic validation strategies and prerequisites. The second geomechanical and second hydrogeological validation problems are also associated with the Mandel effect and the Noordbergum and Rhade effects, respectively, which are three phenomenally well-known but numerically challenging HM effects. Finally, sequentially coupled numerical solutions are compared with either analytical solutions (verification) or fully coupled numerical solutions (benchmarking). In all the four validation problems, they show almost perfect to extremely or very good agreement. In addition, the second geomechanical validation problem clearly displays the Mandel effect and suggests a proper or minimum geometrical ratio of the height to the width for the rectangular domain to maximize agreement between the numerical and analytical solutions. In the meantime, the second hydrogeological validation problem clearly displays the Noordbergum and Rhade effects and implies that the HM two-way sequential coupling scheme used in the linked numerical model is as rigorous as the HM two-way full coupling scheme used in a fully coupled numerical model.

3D Reconstruction Model of Malpasset Dam Using Close-Range Photogrammetry Technique for Geotechnical Application (근거리 사진 측량 기법을 이용한 Malpasset Dam의 3차원 재구성 모델 및 지질공학적 적용)

  • Lee, Hana
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.179-186
    • /
    • 2021
  • Malpasset Dam, located in France, is of great importance in the field of civil and geotechnical engineering as it was the first arch dam that totally collapsed in 1959. A three-dimensional model of the dam was reconstructed using close-range photogrammetry technique. The orientations of foliation developed in the bedrock and the collapse surface were measured. Moreover, both model and measurement results showed high precision. The study result can be used in future studies such as collapse simulation analysis and geotechnical investigations.

A Digital Watermarking of 3D Geometric Model STL for Rapid Prototyping System (쾌속조형 시스템을 위한 3차원 기하학적 형상인 STL의 디지털 워터마킹)

  • 김기석;천인국
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.552-561
    • /
    • 2002
  • In this paper, a new watermarking algorithm for STL files which contains 3D geometric information as triangular facets is proposed. STL files are widely used in rapid prototyping industry as a standard interchange format. The proposed algorithm inserts multi-bit watermark information into the surface normal vector and vertex description area of STL file without distorting the original 3D geometric information. According to the watermark bits, the position of normal vector and the direction of vertex sequence are modulated. The proposed algorithm is robust to the attack of changing the order of the triangular meshes. In addition, the invisibility requirement is also satisfied. Experiment results show that the proposed algorithm can encode and decode watermark bits into the various STL files without any distortion of 3D shape.

  • PDF

New parametric approach to decomposition of disk averaged spectra of potential extra terrestrial planet I. Surface type ratio of the Earth

  • Ryu, Dong-Ok;Seong, Se-Hyun;Yu, Jin-Hee;Oh, Eun-Song;Ahn, Ki-Beom;Hong, Jin-Suk;Lee, Jae-Min;Kim, Suk-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.34.2-34.2
    • /
    • 2010
  • We built 7 potential extra-terrestrial planets including the full 3D Earth model with various surface types and 6 planet models, each with uniform surface characteristics. The surface types include ice, tundra, forest, grass, ground and ocean. We then imported these 7 planets into integrated ray tracing(IRT) model to compute their disk averaged spectra and to understand the spectral behavior depending on the geometrical view, illumination phase and seasonal change. The IRT computation show that the 6 planets with uniform surfaces exhibit clear spectral differences from that of the Earth. We then built a phase and seasonal DAS database for the 6 uniform surface planets and used them for parametric spectral decomposition technique to derive the Earth DAS. This computation resulted in the first potential solution to the surface type ratio of the Earth compared to the measured earth surface type ratio. The computational details and the implications are discussed.

  • PDF

A 3-D Finite Element Model For R/C Structures Based On Orthotropic Hypoelastic Constitutive Law

  • Cho, Chang-Geun;Park, Moon-Ho
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Based on the orthotropic hypoelasticity formulation, a constitutive material model of concrete taking account of triaxial stress state is presented. In this model, the ultimate strength surface of concrete in triaxial stress space is described by the Hsieh's four-parameter surface. On the other hand, the different ultimate strength surface of concrete in strain space is proposed in order to account for increasing ductility in high confinement pressure. Compressive ascending and descending behavior of concrete is considered. Concrete cracking behavior is considered as a smeared crack model, and after cracking, the tensile strain-softening behavior and the shear mechanism of cracked concrete are considered. The proposed constitutive model of concrete is compared with some results obtained from tests under the states of uniaxial, biaxial, and triaxial stresses. In triaxial compressive tests, the peak compressive stress from the predicted results agrees well with the experimental results, and ductility response under high confining pressure matches well the experimental result. The reinforcing bars embedded in concrete are considered as an isoparametric line element which could be easily incorporated into the isoparametric solid element of concrete, and the average stress - average strain relationship of the bar embedded in concrete is considered. From numerical examples for a reinforced concrete simple beam and a structural beam type member, the stress state of concrete in the vicinity of talc critical region is investigated.

  • PDF

Design Analysis of Crystalline Silicon Solar Cell Using 1-Dimensional Modelling (1차원 모델링을 이용한 결정질 실리콘 태양전지의 디자인 해석)

  • Kim, Dong-Ho;Park, Sang-Wook;Cho, Eun-Chel
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.571-576
    • /
    • 2008
  • The simulation program for solar cells, PC1D, was briefly reviewed and the device modeling of a multicrystalline Si solar cell using the program was carried out to understand the internal operating principles. The effects of design parameters on the light absorption and the quantum efficiency were investigated and strategies to reduce carrier recombination, such as back surface field and surface passivation, were also characterized with the numerical simulation. In every step of the process, efficiency improvements for the key performance characteristics of the model device were determined and compared with the properties of the solar cell, whose efficiency (20.3%) has been confirmed as the highest in multicrystalline Si devices. In this simulation work, it was found that the conversion efficiency of the prototype model (13.6%) can be increased up to 20.7% after the optimization of design parameters.

3D numerical modeling of impact wave induced by landslide using a multiphase flow model (다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.943-953
    • /
    • 2021
  • The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.

Automatic 3D Object Digitizing and Its Accuracy Using Point Cloud Data (점군집 데이터에 의한 3차원 객체도화의 자동화와 정확도)

  • Yoo, Eun-Jin;Yun, Seong-Goo;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Recent spatial information technology has brought innovative improvement in both efficiency and accuracy. Especially, airborne LiDAR system(ALS) is one of the practical sensors to obtain 3D spatial information. Constructing reliable 3D spatial data infrastructure is world wide issue and most of the significant tasks involved with modeling manmade objects. This study aims to create a test data set for developing automatic building modeling methods by simulating point cloud data. The data simulates various roof types including gable, pyramid, dome, and combined polyhedron shapes. In this study, a robust bottom-up method to segment surface patches was proposed for generating building models automatically by determining model key points of the objects. The results show that building roofs composed of the segmented patches could be modeled by appropriate mathematical functions and the model key points. Thus, 3D digitizing man made objects could be automated for digital mapping purpose.