• Title/Summary/Keyword: 3D spatial distribution

Search Result 228, Processing Time 0.02 seconds

Fast Estimation of Three-dimensional Spatial Light Intensity Distribution at the User Position of an Autostereoscopic 3D Display by Combining the Data of Two-dimensional Spatial Light Intensity Distributions

  • Hyungki Hong
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.307-312
    • /
    • 2024
  • Measuring the three-dimensional (3D) spatial light intensity distribution of an autostereoscopic multiview 3D display at the user position is time-consuming, as luminance has to be measured at different positions around the user position. This study investigates a method to quickly estimate the 3D distribution at the user position. For this purpose, a measurement setup using a white semitransparent diffusing screen or a two-dimensional (2D) spatial sensor was devised to measure the 2D light intensity distribution at the user position. Furthermore, the 3D spatial light intensity distribution at the user position was estimated from these 2D distributions at different viewing distances. From the estimated 3D distribution, the characteristics of autostereoscopic 3D display performance can be derived and the candidate positions for further accurate measurement can be quickly determined.

Prediction of rock fragmentation and design of blasting pattern based on 3-D spatial distribution of rock factor

  • Sim, Hyeon-Jin;Han, Chang-Yeon;Nam, Hyeon-U
    • 지반과기술
    • /
    • v.3 no.3
    • /
    • pp.15-22
    • /
    • 2006
  • The optimum blasting pattern to excavate a quarry efficiently and economically can be determined based on the minimum production cost, which is generally estimated according to rock fragmentation. Therefore, it is a critical problem to predict fragment size distribution of blasted rocks over an entire quarry. By comparing various prediction models, it can be ascertained that the result obtained from Kuz-Ram model relatively coincides with that of field measurements. Kuz-Ram model uses the concept of rock factor to signify conditions of rock mass such as block size, rock jointing, strength and others. For the evaluation of total production cost, it is imperative to estimate 3-D spatial distribution of rock factor for the entire quarry. In this study, a sequential indicator simulation technique is adopted for estimation of spatial distribution of rock factor due to its higher reproducibility of spatial variability and distribution models than Kriging methods. Further, this can reduce the uncertainty of predictor using distribution information of sample data. The entire quarry is classified into three types of rock mass and optimum blasting pattern is proposed for each type based on 3-D spatial distribution of rock factor. In addition, plane maps of rock factor distribution for each ground level are provided to estimate production costs for each process and to make a plan for an optimum blasting pattern.

  • PDF

Pedestrian Distribution in High-Rise Commercial Complexes: An Analysis of Integrating Spatial and Functional Factors

  • Xu, Leiqing;Xia, Zhengwei
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • One of the key problems in the design of high-rise commercial complex is how to guide reasonable pedestrian distribution in commercial space. In this study, pedestrian distribution in three high-rise commercial complexes in Shanghai and Hong Kong was studied using spatial configuration analysis software Space Syntax and quantification of physical elements in commercial spaces, such as functional attractiveness, entrances, escalators, level variations and passage width. Additionally, in an attempt to integrate functions with spatial integration and spatial depth, two combination variables, the spatial coefficient of function (IF) and spatial depth coefficient of function (F/D), were proposed. The results of the correlation analysis and multiple regression analyses reflected the following: (1) Regarding the influence on pedestrian distribution, there was a synergistic and complementary relationship between function and space; (2) The comprehensive flow distribution analytic model could successfully interpret flow distribution in high-rise commercial complexes and its R Square ranged up to about 70% in the three cases; (3) The spatial coefficient of function (IF) and spatial depth coefficient (F/D) could effectively integrate functions and spatial configuration, which could help close the gap between over-emphasis on function in commercial research and the lack of consideration of function in space-syntax analysis.

3D Spatial Distribution Modeling for Petrophysical Property of Gas Hydrate-Bearing Sediment using Well Data in Ulleung Basin (울릉분지 시추공 분석 자료를 이용한 가스하이드레이트 함유층의 3차원 공간 물성 분포 추정)

  • Lee, Dong-Gun;Shin, Hyo-Jin;Lim, Jong-Se
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.156-168
    • /
    • 2013
  • Drilling expedition #1 in 2007 and drilling expedition #2 in 2010 were performed for gas hydrate resources evaluation and optimal site selection of pilot test in Ulleung basin, East Sea, Korea. This study presents to build the 3D spatial distribution models using the estimated sedimentary facies, porosity, and gas hydrate saturation derived by well logs and core analysis data from UBGH1-4, UBGH1-9, UBGH1-10, UBGH1-14, UBGH2-2-1, UBGH2-2-2, UBGH2-6, UBGH2-9, UBGH2-10 and UBGH2-11. The objective of 3D spatial distribution modeling is to build a geological representation of the gas hydrate-bearing sediment that honors the heterogeneity in 3D grid scale. The facies modeling is populating sedimentary facies into a geological grid using sequential indicator simulation. The porosity and gas hydrate saturation modeling used sequential Gaussian simulation to populate properties stochastically into grid cells.

Basic Study on the Spatial Structure Analysis of the Evaporative Diesel Spray (증발디젤분무의 공간적 구조해석에 관한 기초 연구)

  • Yeom, J.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.5-12
    • /
    • 2010
  • The purpose of this study is to analyze heterogeneous distribution of branch-like structure at downstream region of inner spray. The previous many studies about diesel spray structure have yet stayed in the analysis of 2-D structure, and there are very few of informations which are concerned with 3-D analysis of the structure. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray, and also the combustion characteristics of the diesel engines. Therefore, in order to investigate 3-D structure of evaporative spray the laser beam of 2-D plane was used in this study. Liquid fuel was injected from a single-hole nozzle (l/d=5) into a constant-volume vessel under high pressure and temperature in order to visualize the spray phenomena. The incident laser beam was offset on the central axis. From the images analysis taken by offset of laser beam, we examine formation mechanism of heterogeneous distribution by vortex flow at the downstream of the diesel spray. As the experimental results, the branch-like structure formed heterogeneous distribution of the droplets consists of high concentration of vapor phase in the periphery of droplets and spray tip of branch-like structure. Also the 3-D spatial structure of the evaporative diesel spray can be verified by images obtained from 2-D measurement methods.

Spatial Distribution Characteristics of Vertical Temperature Profile in the South Sea of Jeju, Korea (제주 남부해역 수온 수직구조의 공간분포 특성 파악)

  • Yoon, Dong-Young;Choi, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.162-174
    • /
    • 2012
  • To visualize the characteristics of vertical seawater temperature data, in the ocean having 3D spatial characteristics, 2D thematic maps like horizontal seawater temperature distribution map at each depth layer and 3D volume model using 3D spatial interpolation are used. Although these methods are useful to understand oceanographic phenomena visually, there is a limit to analyze the spatial pattern of vertical temperature distribution or the relationship between vertical temperature characteristics and other oceanic factors (seawater chemistry, marine organism, climate change, etc). Therefore, this study aims to determine the spatial distribution characteristics of vertical temperature profiles in the South Sea of Jeju by quantifying the characteristics of vertical temperature profiles by using an algorithm that can extract the thermocline parameters, such as mixed layer depth, maximum temperature gradient and thermocline thickness. For this purpose spatial autocorrelation index (Moran's I) was calculated including mapping of spatial distribution for three parameters representing the vertical temperature profiles. Also, after grouping study area as four regions by using cluster analysis with three parameters, the characteristics of vertical temperature profiles were defined for each region.

Estimation of Solar Radiation Potential in the Urban Buildings Using CIE Sky Model and Ray-tracing

  • Yoon, Dong Hyeon;Song, Jung Heon;Koh, June Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.141-151
    • /
    • 2020
  • Since it was first studied in 1980, solar energy analysis model for geographic information systems has been used to determine the approximate spatial distribution of terrain. However, the spatial pattern was not able to be grasped in 3D (three-dimensional) space with low accuracy due to the limitation of input data. Because of computational efficiency, using a constant value for the brightness of the sky caused the simulation results to be less reliable especially when the slope is high or buildings are crowded around. For the above reasons, this study proposed a model that predicts solar energy of vertical surfaces of buildings with four stages below. Firstly, CIE (Commission Internationale de l'Eclairage) luminance distribution model was used to calculate the brightness distribution of the sky using NREL (National Renewable Energy Laboratory) solar tracking algorithm. Secondly, we suggested a method of calculating the shadow effect using ray tracing. Thirdly, LOD (Level of Detail) 3 of 3D spatial data was used as input data for analysis. Lastly, the accuracy was evaluated based on the atmospheric radiation data collected through the ground observation equipment in Daejeon, South Korea. As a result of evaluating the accuracy, NMBE was 5.14%, RMSE 11.12, and CVRMSE 7.09%.

DEVELOPING THE REFORESTRATION SIMULATION SYSTEM USING 3D GIS

  • Jo Myung-Hee;Jo Yun-Won
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.721-724
    • /
    • 2005
  • In this study the spatial distribution characters of forest in forest damaged area were first considered by analyzing spatial data and monitoring forest landscape. Then suitable tree species on each site were selected through the weighted score analysis of GIS analysis methods. Finally, the best forest stand arrangement method could be presented on the 3D based simulation system for the advanced reforestation technology in Korea. For this purpose, the virtual reforestation system was implemented by using the concept of virtual GIS and CBD (Component Based Development) method. By use of this system the change offorest landscape of burnt forest area some years after reforestation practice could be detected and monitored by applying the site index and 3D modeling method.

  • PDF

Population Structure, and Emergence and Growth Dynamics of Seedling, and Spatial Distribution of Dendropanax morbifera Lev.(Araliaceae) (황칠나무의 집단구조와 치수의 발생과 생육동태 및 공간분포)

  • 정재민
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.345-352
    • /
    • 1998
  • A Korean endemic and evergreen small tree ' Dendropanax morbifera $L_{EV}$.(Araliaceae)' is a component of evergreen forest and mainly idstributein sourthern region and islands in Korea. A local population of D. morbifera which is located between evergreen and deciduous forest within 50m x 50m quadrate was investigated to ascertain the change of population structure, emergence and growth dynamics of seedlings and saplings, and pattern of spatial distribution by the temproal and spatial expansion of population . The result of analysis of population structure by Importnace Value(IV), evergreen forest showed a high species diversity of evergreen tree species such as Cinnamomum japonicum, Machilus japonica, Neolitsea serica, Daphniphyllum macropodum, Ligustrum japonicum, and etc, in middle and under story than in upper story where Camelia japonica and Quercus acuta were dominant. And in conterminous deciduous fores, the major component of evergreen forest in this region, Camellia japonica, Quercus acuta, evergreen tree of Lauraceae and etc. were abundant in only under story. IV of D. morbifera differed from among three story. In comparative analysis of emergence and growth dynamics of D. morbifera seedlings and saplings between evergreen and deciduous forest, emergece and density of seedlings were significantly greater in evergreen than in deciduous forest, and growth of height and basal diameter of seedlings and saplings were slightly larger in evergreen than in deciduous forest. The spatial distribution patterns by Moristia's index mapping of indivuduals using a lattice method of XY axis within this population showed that seedlings(age up to 2 years) and saplings (age>2 years and height<1m) both evergreen and deciduous forest were more or less aggregated apart from mature trees, and thougth intermediate trees(height>1m and dbh<10cm) had a aggregated distribution pattern, mature trees(dbh>10cm were uniform. In conclusion , the expansion of D. morbfera population from evergreen to deciduous forest accompanied with a mumber of evergreen woody species, and also, emergence and recruitment, and growth of seedlings were greatly influenced moisture and canopy by around community structure.

  • PDF

Prediction of Rock Fragmentation and Design of Blasting Pattern based on 3-D Spatial Distribution of Rock Factor (발파암 계수의 3차원 공간 분포에 기초한 암석 파쇄도 예측 및 발파 패턴 설계)

  • Shim Hyun-Jin;Seo Jong-Seok;Ryu Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.264-274
    • /
    • 2005
  • The optimum blasting pattern to excavate a quarry efficiently and economically can be determined based on the minimum production cost which is generally estimated according to rock fragmentation. Therefore it is a critical problem to predict fragment size distribution of blasted rocks over an entire quarry. By comparing various prediction models, it can be ascertained that the result obtained from Kuz-Ram model relatively coincides with that of field measurements. Kuz-Ram model uses the concept of rock factor to signify conditions of rock mass such as block size, rock jointing, strength and others. For the evaluation of total production cost, it is imperative to estimate 3-D spatial distribution of rock factor for the entire quarry. In this study, a sequential indicator simulation technique is adopted for estimation of spatial distribution of rock factor due to its higher reproducibility of spatial variability and distribution models than Kriging methods. Further, this can reduce the uncertainty of predictor using distribution information of sample data The entire quarry is classified into three types of rock mass and optimum blasting pattern is proposed for each type based on 3-D spatial distribution of rock factor. In addition, plane maps of rock factor distribution for each ground levels is provided to estimate production costs for each process and to make a plan for an optimum blasting pattern.