• Title/Summary/Keyword: 3D solid model

Search Result 296, Processing Time 0.025 seconds

Temperature Field and Thermal Stress Simulation of Solid Brake Disc Based on Three-dimensional Model (3차원 브레이크 디스크 모델의 온도 분포와 열응력 시뮬레이션에 관한 연구)

  • Hwang, Pyung;Seo, Hee-Chang;Wu, Xuan
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • The brake system is an important part of the automobile safety system. The disc brake system is divided into two parts: a rotating axi-symmetrical disc, and the stationary pads. The frictional heat, which is generated on the interface of the disc and pads, can cause high temperatures during the braking process. The frictional heat source (the pads) is moving on the disc and the location is time-dependent. Our study applies a moving heat source, which is defined by the time and space variable on the frictional surface, in order to simulate the frictional heat behavior accurately during the braking process. The object of the present work is the determination of the temperature distribution and thermal stress in the solid disc by non-axisymmetric 3D modeling for repeated braking.

Generating a Rectangular Net from Unorganized Point Cloud Data Using an Implicit Surface Scheme (음 함수 곡면기법을 이용한 임의의 점 군 데이터로부터의 사각망 생성)

  • Yoo, D.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.274-282
    • /
    • 2007
  • In this paper, a method of constructing a rectangular net from unorganized point cloud data is presented. In the method an implicit surface that fits the given point data is generated by using principal component analysis(PCA) and adaptive domain decomposition method(ADDM). Then a complete and quality rectangular net can be obtained by extracting voxel data from the implicit surface and projecting exterior faces of extracted voxels onto the implicit surface. The main advantage of the proposed method is that a quality rectangular net can be extracted from randomly scattered 3D points only without any further information. Furthermore the results of this works can be used to obtain many useful information including a slicing data, a solid STL model and a NURBS surface model in many areas involved in treatment of large amount of point data by proper processing of implicit surface and rectangular net generated previously.

반도체 장비용 고속프레스의 동특성 해석에 관한 연구

  • Guk Jeong-Geun;Jo Byeong-Gwan;Lee U-Yeong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.155-159
    • /
    • 2005
  • High speed presses with high resolution in semiconductor lead frame manufacturing process are needed . But high speed operation accompanies mechanical vibration. therefore optimized kinematic structure to minimize vibration is required for a high speed press. And the growing competition in the industry asks a press with low cost, high speed, high resolution, and high pressing force, For this purpose a high speed press was modeled with 3D CAD solid modeling system and dynamic analysis were performed with CAE S/W for multibody dynamic analysis, Through these analyses a motor appropriate to a high speed press was selected and link structure for feeding system of the press was modified to reduce vibration. To perform this analysis working Model which is 2D kinematics and dynamic analysis software was used.

  • PDF

A Study on the Rapid Prototyping using Automatic Design Program (자동설계 프로그램을 이용한 급속성형에 관한 연구)

  • 이승수;김민주;전언찬
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.15-22
    • /
    • 2002
  • A study is the selection of optimum forming condition for RP system. We develop the Automatic design program for machine element using visual LISP program in AutoCAD. Automatic design program reduces the required time for feedback between design and manufacturing of workpiece. Also we investigate the relationship between circularity of 3D solid model and circularity of rapid prototype using RP system and we will find optimum forming condition in RP system.

Study of Effective Stiffness and Effective Strength for a Pinwheel Model combined with Diamond Truss-Wall Corrugation (P-TDC) (다이아몬드 트러스 벽면으로 구성된 P-TDC 모델의 강성 및 강도 연구)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.109-124
    • /
    • 2016
  • The objective of this paper is to find the density, stiffness, and strength of truss-wall diamond corrugation model combined with pinwheel truss inside space. The truss-wall diamond corrugation (TDC) model is defined as a unit cell coming from solid-wall diamond corrugation (SDC) model. Pinwheel truss-wall diamond corrugation (P-TDC) model is made by TDC connected with pinwheel structure inside of the space. Derived ideal solutions of P-TDC is based on truss-wall and pinwheel truss model at first. And then it is compared with Gibson-Ashby's ideal solution. To validate the ideal solutions of the P-TDC, ABAQUS software is used to predict the density, strength, and stiffness, and then each of them are compared to the ideal solution of Gibson-Ashby with a log-log scale. Applied material property is stainless steel 304 because of having cost effectiveness. Applied parameters for P-TDC are 1 thru 5 mm diameter within fixed opening width as 4mm. In conclusion, the relative Young's modulus and relative yield strength of the P-TDC unit model is reasonable matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, P-TDC model is hoped to be applied to make sandwich core structure by advanced technologies such as 3D printing skills.

Melt-solid interface and segregation in horizontal bridgman growth using 2 - and 3 - dimensional pseudo - steady - state model (2차원 및 3차원 정상상태 모델에 의한 수평브릿지만 결정성장에서의 고 - 액 계면과 편석)

  • 민병수;김도현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.306-317
    • /
    • 1995
  • Abstract Gallium arsenide crystal is usually grown from the melt by the horizontal Bridgman method. We constructed pseudo - steady - state model for crystal growth of GaAs which inclue melt, crystal and the free interface. Mathematical equations of the model were solved for flow, temperature, and concentration field in the melt and temperature field in the crystal. The location and shape of the interface were also solved simultaneously. In 2 - dimensional model, the shape of the interface is flat with adiabatic thermal boundary condition, but it becomes curved with completely conducting thermal boundary condition. In 3 - dimensional model, the interface is less curved than 2 - dimensional case and the flow intensity is similar to that of 2 - dimensional case. With the increase of flow intensity vertical segregation shows maximum value in both 2 - and 3 - D model. However, the maximum value occurs in lower flow intensity in 2 - D model because the interface is more curved for the same flow intensity.

  • PDF

A nonlinear model for ultimate analysis and design of reinforced concrete structures

  • Morfidis, Konstantinos;Kiousis, Panos D.;Xenidis, Hariton
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.695-710
    • /
    • 2014
  • This paper presents a theoretical and computational approach to solve inelastic structures subjected to overloads. Current practice in structural design is based on elastic analysis followed by limit strength design. Whereas this approach typically results in safe strength design, it does not always guarantee satisfactory performance at the service level because the internal stiffness distribution of the structure changes from the service to the ultimate strength state. A significant variation of relative stiffnesses between the two states may result in unwanted cracking at the service level with expensive repairs, while, under certain circumstances, early failure may occur due to unexpected internal moment reversals. To address these concerns, a new inelastic model is presented here that is based on the nonlinear material response and the interaction relation between axial forces and bending moments of a beam-column element. The model is simple, reasonably accurate, and computationally efficient. It is easy to implement in standard structural analysis codes, and avoids the complexities of expensive alternative analyses based on 2D and 3D finite-element computations using solid elements.

Three-dimensional Topology Optimization using the CATO Algorithm

  • LEE, Sang Jin;BAE, Jung Eun
    • Architectural research
    • /
    • v.11 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • An application of the constrained adaptive topology optimization (CATO) algorithm is described for three-dimensional topology optimization of engineering structures. The enhanced assumed strain lower order solid finite element (FE) is used to evaluate the values of objective and constraint functions required in optimization process. The strain energy (SE) terms such as elastic and modal SEs are employed as the objective function to be minimized and the initial volume of structures is introduced as the constraint function. The SIMP model is adopted to facilitate the material redistribution and also to produce clearer and more distinct structural topologies. The linearly weighted objective function is introduced to consider both static and dynamic characteristics of structures. Several numerical tests are tackled and it is used to investigate the performance of the proposed three-dimensional topology optimization process. From numerical results, it is found to be that the CATO algorithm is easy to implement and extremely applicable to produce the reasonable optimum topologies for three dimensional optimization problems.

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II : Proposal of a method to use shell element model

  • Kim, Jae Woong;Jang, Beom Seon;Kang, Sung Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.245-256
    • /
    • 2014
  • I-core sandwich panel that has been used more widely is assembled using high power $CO_2$ laser welding. Kim et al. (2013) proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

Analysis of Disc Degeneration in a Poroelastic Spinal Motion Segment FE Model (다공탄성체 척추운동분절 유한요소 모델을 이용한 추간판의 퇴화과정 분석)

  • Woo D.G.;Kim Y.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.248-251
    • /
    • 2005
  • To investigate the degeneration process in the intervertebral disc, a three dimensional (3D) poroelastic finite-element (FE) model was developed. Disc was modeled as two different regions, such as annulus modeled with fiber reinforced 20 node poroelastic ground matrix and nucleus having large porosity. Excess Von Mises stress in the disc element assumed to be a possible source of degeneration under compressive loading condition. Recursive calculation was continued until the desired convergence was attained by changing the permeability and porosity of those elements, which could be predicted from the previous iteration. The degenerated disc model showed that relatively small compressive stresses were generated in the nucleus elements compared to normal disc. Its distribution along the sagittal plane was matched well with a previously reported experimental result. Contrasts to this result, pore pressures in the nucleus were higher than those in the normal disc. Total stress indicated similar values for two different models. This new approach using poroelastic modeling could provide the explanation of the interaction between fluid and solid matrix in the disc during the degeneration process.

  • PDF