• Title/Summary/Keyword: 3D shape data

Search Result 810, Processing Time 0.038 seconds

Determination and Visualization of Three-Dimensional Shape Based on Images (영상 기반 3차원 형상 추출 및 가시화)

  • Cho Jung-Ho;Song Moon-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.15-18
    • /
    • 2002
  • We propose an image based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape from silhouette (SFS) technique and the efficacy of the SFS method is tested using a sample data set. This system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes. The proposed system potentially may be used in three dimensional design applications such as 3-D animation and 3-D games.

  • PDF

Harmonization of IFC 3D Building Model Standards and ISO/STEP AP202 Drawing Standards for 2D Shape Data Representation (IFC 3차원 건축모델표준과 ISO/STEP AP202도면표준의 2차원 형상정보 연계방안)

  • Won, Ji-Sun;Lim, Kyoung-Il;Kim, Seong-Sig
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.429-439
    • /
    • 2006
  • The purpose of this study is to support the integration from current 2D drawing-based design to future 3D model-based design. In this paper, an important theme is the combination between the STEP-based 2D drawing standards (i.e., AP202) and the IFC-based 3D building model standards. To achieve the purpose, two methodologies are proposed as follows: the development of IFC extension model for the 2D shape data representation by harmonizing ISO/STEP AP202; and the development of mapping solution between IFC 2D extension model and KOSDIC by constructing the exchange scenario for 2D shape data representation. It is expected that the proposed IFC2X2 2D extension model and mapping solution will offer the basis of development of the integrated standards model in AEC industry.

A Study on Development of the Basic Hat Pattern using 3D Scan Data for Korean Women - Focusing on the 6 pieces Crown - (3D 측정치를 이용한 여성용 모자 패턴 개발 - 6면 크라운 중심으로 -)

  • Kim, Cha-Hyun;Kim, Gum-Hwa
    • Fashion & Textile Research Journal
    • /
    • v.12 no.3
    • /
    • pp.354-363
    • /
    • 2010
  • The purpose of this study was to provide some preliminary results on application of 3D scan data of head shapes to the hat design and pattern-making. This paper defined necessary measurement items and concepts in 3-dimensional images of head shapes. And also it presented the methodology to pattern-making of 6-piece crown hat based on 3D data. It used the data of Size Korea to pick up and choose a head shape model with the average head size of Korean women in their twenties. Main results were: 1. The 3D scan data of head shape was better than the 1 dimensional measurement data. Because I could establish a hat pattern-making theory by the 3D scan data of head. 2. The 3D scan data provided the basis for conceptualization of basic measurement points and items for a better fit of hats as well as the definition of the basic hat circumference. 3. This presented a methodology for analyzing out head shape by 3D scan data, and allowed the derivation of the basic hat circumference from the maximum head circumference. 4. As the 6-piece Crown cloche hat made by this method fitted the head shape model perfectly, this methodology could suggest potential applicability to various hat design.

Generation of 3 Dimensional Image Model from Multiple Digital Photographs (다중 디지털 사진을 이용한 3차원 이미지 모델 생성)

  • 정태은;석정민;신효철;류재평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1634-1637
    • /
    • 2003
  • Any given object on the motor-driven turntable is pictured from 8 to 72 different views with a digital camera. 3D shape reconstruction is performed with the integrated software called by Scanware from these multiple digital photographs. There are several steps such as configuration, calibration, capturing, segmentation, shape creation, texturing and merging process during the shape reconstruction process. 3D geometry data can be exported to cad data such as Autocad input file. Also 3D image model is generated from 3D geometry and texture data, and is used to advertise the model in the internet environment. Consumers can see the object realistically from wanted views by rotating or zooming in the internet browsers with Scanbull spx plug-in. The spx format allows a compact saving of 3D objects to handle or download. There are many types of scan equipments such as laser scanners and photogrammetric scanners. Line or point scan methods by laser can generate precise 3D geometry but cannot obtain color textures in general. Reversely, 3D image modeling with photogrammetry can generate not only geometries but also textures from associated polygons. We got various 3D image models and introduced the process of getting 3D image model of an internet-connected watchdog robot.

  • PDF

A Study on 3D modeling using a 3D scanner and VisualLISP (3D scanner 와 VisualLISP을 이용한 3차원 모델링에 관한 연구)

  • 김세민;이승수;김민주;장성규;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.410-413
    • /
    • 2001
  • This paper is to model a 3D-shape product applying mathematically the data acquired from a 3D scanner and using an Automatic Design Program. The research studied in the reverse engineering up to now has been developed continuously and surprisingly. However, forming 3D-shape solid models in CAE and CAM, based on the research, the study leaves much to be desired. Especially, analyses and studies reverse-designing automatically using measured data after manufacturing. Consequently, we are going to acquire geometric data using an 3D scanner in this study with which we will open a new field of reverse engineering by a program whic hcan design a 3D-shape solid model in a CAD-based program automatically.

  • PDF

The Implementation of the Digital watermarking for 3D Polygonal Model (3차원 형상 모델의 디지털 워터마킹 구현)

  • Kim, Sun-Hyung;Lee, Sun-Heum;Kim, Gee-Seog;Ahn, Deog-Sang
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.925-930
    • /
    • 2002
  • This paper discusses techniques for embedding data into 3D polygonal models of geometry. Much researches of Watermarking had been gone as element technology of DRM (digital rights management). But, few research had gone to 3D polygonal model. Most research is limited at text document, 2D image, animation, music etc. RP system is suitable a few production in various goods species, and it is used much in industry to possible reason that produce prototype and find error or incongruent factor at early stage on design in product development childhood. This paper is research about method that insert watermark in STL ( stereolithography) file that have 3D shape model. Proposed algorithm inserts watermark in normal vector region and facet's interior region of 3D shape data. For this reason, 3D shape does not produce some flexure and fulfill invisibility of watermark. Experiment results that insert and extract watermark in normal netter region and facet's Interior region of 3D shape data by proposed algorithm do not influence entirely in 3D shape and show that insertion and extraction of watermark are possible.

Accuracy Evaluation by Point Cloud Data Registration Method (점군데이터 정합 방법에 따른 정확도 평가)

  • Park, Joon Kyu;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • 3D laser scanners are an effective way to quickly acquire a large amount of data about an object. Recently, it is used in various fields such as surveying, displacement measurement, 3D data generation of objects, construction of indoor spatial information, and BIM(Building Information Model). In order to utilize the point cloud data acquired through the 3D laser scanner, it is necessary to make the data acquired from many stations through a matching process into one data with a unified coordinate system. However, analytical researches on the accuracy of point cloud data according to the registration method are insufficient. In this study, we tried to analyze the accuracy of registration method of point cloud data acquired through 3D laser scanner. The point cloud data of the study area was acquired by 3D laser scanner, the point cloud data was registered by the ICP(Iterative Closest Point) method and the shape registration method through the data processing, and the accuracy was analyzed by comparing with the total station survey results. As a result of the accuracy evaluation, the ICP and the shape registration method showed 0.002m~0.005m and 0.002m~0.009m difference with the total station performance, respectively, and each registration method showed a deviation of less than 0.01m. Each registration method showed less than 0.01m of variation in the experimental results, which satisfies the 1: 1,000 digital accuracy and it is suggested that the registration of point cloud data using ICP and shape matching can be utilized for constructing spatial information. In the future, matching of point cloud data by shape registration method will contribute to productivity improvement by reducing target installation in the process of building spatial information using 3D laser scanner.

A Study on the 3D Modelling and Transference of Scaning Data using LSC Method (LSC를 이용한 스캔데이터 변환 및 3차원 모델 생성에 관한 연구)

  • 김민주;이승수;박정보;김순경;전언찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.387-392
    • /
    • 2001
  • This paper is to model a 30-shape product applying mathematically the data acquired from a 3D scanner and using an Automatic Design Program. The research studied in th reverse engineering up to now has been developed continuously and surprisingly. However, forming 3D-shape solid models in CAE and CAM, based on the research, the study leaves much to be desired. Especially, analyses and studies reverse-designing automatically using measured data after manufacturing. Consequently, we are going to acquire geometric data using an 3D scanner in this study with which we will open a new field of reverse engineering by a program which can design a 3D-shape solid model in a CAD-based program automatically.

  • PDF

3D Shape Descriptor for Segmenting Point Cloud Data

  • Park, So Young;Yoo, Eun Jin;Lee, Dong-Cheon;Lee, Yong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.643-651
    • /
    • 2012
  • Object recognition belongs to high-level processing that is one of the difficult and challenging tasks in computer vision. Digital photogrammetry based on the computer vision paradigm has begun to emerge in the middle of 1980s. However, the ultimate goal of digital photogrammetry - intelligent and autonomous processing of surface reconstruction - is not achieved yet. Object recognition requires a robust shape description about objects. However, most of the shape descriptors aim to apply 2D space for image data. Therefore, such descriptors have to be extended to deal with 3D data such as LiDAR(Light Detection and Ranging) data obtained from ALS(Airborne Laser Scanner) system. This paper introduces extension of chain code to 3D object space with hierarchical approach for segmenting point cloud data. The experiment demonstrates effectiveness and robustness of the proposed method for shape description and point cloud data segmentation. Geometric characteristics of various roof types are well described that will be eventually base for the object modeling. Segmentation accuracy of the simulated data was evaluated by measuring coordinates of the corners on the segmented patch boundaries. The overall RMSE(Root Mean Square Error) is equivalent to the average distance between points, i.e., GSD(Ground Sampling Distance).

Acquisition Model for 3D Shape Measurement Data

  • Park, Jong-Sik;Jang, Wang-Jin;Lee, Seong-Beom;Park, Chan-Seok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2008
  • The demand for three-dimensional (3D) shape measurements is increasing in a variety of fields, including the manufacture of molds and dies. The most popular technology for 3D shape measurement is the coordinate measuring machine (CMM) with a contact trigger probe. Although a CMM provides a high degree of accuracy, it is inefficient due to its long measuring time. It also has difficulty measuring soft objects that can be deformed by the touch of the contact probe. In addition, a CMM cannot digitize areas that are difficult to reach, and cannot capture very minute details on the surface of complex parts. For these reasons, optical non-contact measurement techniques are receiving more attention since they eliminate most of the problems associated with contact methods. Laser scanning is emerging as one of the more promising non-contact measurement techniques. This paper describes various acquisition considerations for laser scanning, including the accuracy of the 3D scan data, which depends on the charge-coupled device (CCD) gain and noise. The CCD gain and noise of a 3D laser scanner are varied while keeping the other conditions constant, and the measurement results are compared to the dimensions of a standard model. The experimental results show that a considerable time savings and an optimum degree of accuracy are possible by selecting the proper CCD gain and noise.