• Title/Summary/Keyword: 3D response surface

Search Result 295, Processing Time 0.033 seconds

Performance/Noise Optimization of Centrifugal Fan Using Response Surface Method (반응표면법을 이용한 원심팬 성능/소음 최적화)

  • Shin, Donghui;Heo, Seung;Cheong, Cheolung;Kim, Tae-Hoon;Jung, Jiwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.165-172
    • /
    • 2017
  • In this study, centrifugal fan blades used to circulate cold air inside a household refrigerator were optimized to achieve high performance and low noise by using the response surface method, which is frequently employed as an optimization algorithm when multiple independent variables affect one dependent variable. The inlet and outlet blade angles, and the inner radius, were selected as the independent variables. First, the fan blades were optimized to achieve the maximum volume flow rate. Based on this result, a prototype fan blade was manufactured using a 3-D printer. The measured P-Q curves confirmed the increased volume flow rate of the proposed fan. Then, the rotation speed of the new fan was decreased to match the P-Q curve of the existing fan. It was found that a noise reduction of 1.7 dBA could be achieved using the new fan at the same volume flow rate.

Aerodynamic Design Optimization of An Axial Flow Compressor Rotor (반응면 기법을 이용한 천음속 축류압축기의 3차원 형상 최적설계)

  • Ahn, Chan-Sol;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.135-142
    • /
    • 2001
  • Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. Ana, it is found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

  • PDF

A Design Study of Aerodynamic Noise Reduction In Centrifugal Compressor Part II . Low-noise Optimization Design (원심압축기의 공력소음 저감에 관한 설계연구 Part II : 저소음 최적설계)

  • 선효성;이수갑
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.939-944
    • /
    • 2004
  • The numerical methods including the performance analysis and the noise prediction of the centrifugal compressor impeller are coupled with the optimization design skill, which consists of response surface method, statistical approach, and genetic algorithm. The flow-field Inside of a centrifugal compressor is obtained numerically by solving Wavier-Stokes equations. and then the propagating noise is estimated from the distributed surface pressure by using Ffowcs Williams-Hawkings formulation. The quadratic response surface model with D-optimal 3-level factorial experimental design points is constructed to optimize the impeller geometry for the advanced centrifugal compressor. The statistical analysis shows that the quadratic model exhibits a reasonable fitting quality resulting in the impeller blade design with high performance and low far-field noise level. The influences of selected design variables, objective functions, and constraints on the impeller performance and the impeller noise are also examined as a result of the optimization process.

Analytical Prediction of Heating Temperature to Manufacture Rotor with Shrink Fit for Ultra High Speed Motor According to Change Dimension of Rotor (초고속기용 열박음 로터 제작을 위한 로터의 치수에 따른 가열온도의 해석적 예측)

  • Hong, Do-Kwan;Woo, Byung-Chul;Jeong, Yeon-Ho;Koo, Dae-Hyun;Ahn, Chan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.963-968
    • /
    • 2009
  • This paper deals with shrink fit analysis of rotor by 2D cross-section, 2D axis-symmetry, and 3D FEM model. And this paper presents 2nd order approximation function of thermal expansion displacement by design variables (shape dimension, heating temperature, sleeve length, interference etc.), table of orthogonal array and RSM(response surface methodology). The possibility of the rotor with shrink fit is evaluated by thermal expansion displacement. If thermal expansion displacement is larger than interference, shrink fit enable to make the rotor. 2D axis-symmetry model and 3D model are more reasonable than 2D cross-section model, because stress and strain is different along length of shaft.

The Rocking Response of Three Dimensional Rectangular Liquid Storage Tank (3차원 구형 액체 저장 Tank의 Rocking응답)

  • 김재관;박진용;진병무;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.23-34
    • /
    • 1998
  • A dynamic fluid-structure-soil interaction analysis method is developed to investigate the effects of translational and/or rocking motions on the seismic response of flexible rectangular liquid storage tanks founded on the deformable ground. The governing equation for the dynamics of 3-D rectangular tanks subjected to the translational and/or rocking motion is abtained by applying Rayleigh-Ritz method. The dynamic stiffness matrices of a rigid rectangular foundation resting on the surface of a stratum overlaid bedrock are calculated by hyperelement method. The seismic responses of 3-D flexible tank model founded on the deformable ground is calculated by combining the governing equation for the fluid-tank system with the dynamic stiffness matrix of th rigid surface foundation.

  • PDF

Fast Response Characteristics in Liquid Crystal Display using Operating Mode of the Nematic Liquid Crystal (네마틱 액정 동작 모드를 이용한 액정소자의 고속 응답 특성)

  • Bae, Yu-Han;Hwang, Jeoung-Yeon;Kim, Kang-Woo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.206-209
    • /
    • 2004
  • We investigated response characteristics of liquid crystal display(LCD) with different operating mode of nematic liquid crystals (NLCs) such as $45^{\circ}$twist nematic (TN), $67.3^{\circ}$TN and ECB(electrical controlled birefringence) on a rubbed polyimide (PI) surface. The three kinds of LCD operating mode obtain stable EO performance. Low transmittances of the $45^{\circ}$TN and $67.3^{\circ}$TN cell on the rubbed PI surface were achieved by using low cell gap d. The fast response time of ECB cell among the three kinds of LCD operating mode was measured.

  • PDF

Harmonic seismic waves response of 3D rigid surface foundation on layer soil

  • Messioud, Salah;Sbartai, Badredine;Dias, Daniel
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • This study, analyses the seismic response for a rigid massless square foundation resting on a viscoelastic soil layer limited by rigid bedrock. The foundation is subjected either to externally applied forces or to obliquely incident seismic body or surface harmonic seismic waves P, SV and SH. A 3-D frequency domain BEM formulation in conjunction with the thin layer method (TLM) is adapted here for the solution of elastodynamic problems and used for obtained the seismic response. The mathematical approach is based on the method of integral equations in the frequency domain using the formalism of Green's functions (Kausel and Peck 1982) for layered soil, the impedance functions are calculated by the compatibility condition. In this study, The key step is the characterization of the soil-foundation interaction with the input motion matrix. For each frequency the impedance matrix connects the applied forces to the resulting displacement, and the input motion matrix connects the displacement vector of the foundation to amplitudes of the free field motion. This approach has been applied to analyze the effect of soil-structure interaction on the seismic response of the foundation resting on a viscoelastic soil layer limited by rigid bedrock.

Optimization of Electro-UV-Ultrasonic Complex Process for E. coli Disinfection using Box-Behnken Experiment (Box-Behnken법을 이용한 E. coli 소독에서 전기-UV-초음파 복합 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.149-156
    • /
    • 2011
  • This experimental design and response surface methodology (RSM) have been applied to the investigation of the electro-UV-ultrasonic complex process for the disinfection of E. coli in the water. The disinfection reactions of electro-UV-ultrasonic process were mathematically described as a function of parameters power of electrolysis ($X_1$), UV ($X_2$), and ultrasonic process ($X_3$) being modeled by use of the Box-Behnken technique, which was used for fitting 2nd order response surface model. The application of RSM yielded the following regression equation, which is empirical relationship between the residual E. coli number (Ln CFU) in water and test variables in coded unit: residual E. coli number (Ln CFU) = 23.69 - 3.75 Electrolysis - 0.67 UV - 0.26 Ultrasonic - 0.16 Electrolysis UV + 0.05 Electrolysis Ultrasonic + 0.27 $Electrolysis^2$ + 0.14 $UV^2$ - 0.01 $Ultrasonic^2$). The model predictions agreed well with the experimentally observed result ($R^2$ = 0.983). Graphical 2D contour and 3D response surface plots were used to locate the optimum range. The estimated ridge of maximum response and optimal conditions for residual E. coli number (Ln CFU) using 'numerical optimization' of Design-Expert software were 1.47 Ln CFU/L and 6.94 W of electrolysis, 6.72 W of UV and 14.23 W of ultrasonic process. This study clearly showed that response surface methodology was one of the suitable methods to optimize the operating conditions and minimize the residual E. coli number of the complex disinfection.

Optimum Design of A-Pillar Trim for Occupant Protection (승원 안전을 고려한 승용차 A-Pillar Trim의 최적 설계)

  • 김형곤;강신일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.99-106
    • /
    • 2001
  • NHTSA has been conducting biomechanical studies to reduce inujuries sustained sustained during automotive collision. Furthermore, NHTSA added the regulation to the FMVSS 201, limiting the equivalent HIC(Head Injury Criterion) value under 1000. In the presont work, a methodology was developed for the optimum design of the A-pillar trim with rib-structures. The design variables for the rib-strucrures were the transverse spacing, the longitudinal spacing, and the thickness. The required sets of the design varibles were decided based on the design of experiments. The head impact simulations were carried out using the LS-DYNA3D, and the HIC(d) values were computed using the resulrs of the head impact simulation. The objective function was constructed using the response surface methed (RSM). When the obtained optimum values were not inside the region of interest, the design proceduers were repeated by changing the region of interest. Finally, an A-pillar trim with rib-structures, which resulred in HIC(d) value under 850 for 15 mph head-trim impact, was developed.

  • PDF

Damage detection of 3D printed mold using the surface response to excitation method

  • Tashakori, Shervin;Farhangdoust, Saman;Baghalian, Amin;McDaniel, Dwayne;Tansel, Ibrahim N.;Mehrabi, Armin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.369-376
    • /
    • 2020
  • The life of conventional steel plastic injection molds is long but manufacturing cost and time are prohibitive for using these molds for producing prototypes of products in limited numbers. Commonly used 3D printers and rapid prototyping methods are capable of directly converting the digital models of three-dimensional solid objects into solid physical parts. Depending on the 3D printer, the final product can be made from different material, such as polymer or metal. Rapid prototyping of parts with the polymeric material is typically cheaper, faster and convenient. However, the life of a polymer mold can be less than a hundred parts. Failure of a polymeric mold during the injection molding process can result in serious safety issues considering very large forces and temperatures are involved. In this study, the feasibility of the inspection of 3D printed molds with the surface response to excitation (SuRE) method was investigated. The SuRE method was originally developed for structural health monitoring and load monitoring in thin-walled plate-like structures. In this study, first, the SuRE method was used to evaluate if the variation of the strain could be monitored when loads were applied to the center of the 3D printed molds. After the successful results were obtained, the SuRE method was used to monitor the artifact (artificial damage) created at the 3D printed mold. The results showed that the SuRE method is a cost effective and robust approach for monitoring the condition of the 3D printed molds.