• Title/Summary/Keyword: 3D printing model

Search Result 213, Processing Time 0.031 seconds

Prospect for 3D Printing Technology in Medical, Dental, and Pediatric Dental Field (의료 3D 프린팅 기술의 전망 및 소아치과분야에서의 활용)

  • Lee, Sangho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.1
    • /
    • pp.93-108
    • /
    • 2016
  • One of the fields to which the 3D printing technology can be applied is the field of medicine. Recently, the application of 3D printing technology to the bio-medical field has been gradually increasing with the commercializing of the bio-compatible or bio-degradable materials. The technology is currently contributing to the biomedical field by reducing times required for operations or minimizing adverse effects through preoperative identification of post-surgical consequences or model surgery with artificial bones and organs. This technology also enables the production of customized biomedical auxiliary products like hearing aids or artificial legs etc. For the field of dentistry, the 3D printing technology is also expected to elevate the level of dental treatment by making the customized orthodontic models, crown, bridge, inlay, and surgical guides for implant and surgery. However, issues remaining unidentified or incomplete in printing materials, modeling technology, software technology associated with CAD, verification of bio-stability and bio-effectiveness of materials or in compatibility and standardization of the technology are yet to be solved or be clarified for the full-scale application of the 3D printing technology, thus, it seems such issues should be resolved through further studies.

A case of removable dentures using digital method (디지털 방식을 이용하여 제작한 양악 가철성 의치 수복 증례)

  • Lee, Ji-Soo;Ahn, Su-Jin;Leesungbok, Richard;Lee, Suk-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.250-257
    • /
    • 2018
  • Generally dentures are manufactured by conventional method, however the frequency of fabricating denture using digital method is increasing due to the recent development of digital technology in dentistry. The digital method of manufacturing denture is classified into two systems; 3D scan of the impression to arrange the artificial teeth on the CAD (Computer-aided design) and 3D printing to produce the resin-based complete denture, or 3D scan of the model to design of the framework using CAD, resin pattern formation by 3D printing and casting of metal framework of complete denture or removable partial denture. In this case report, electronic surveying and design the metal framework of the dentures were performed using CAD program, and plastic resin patterns fabricated by 3D printing were casted for upper full denture and lower removable partial denture. During follow-up periods, dentures using digital method have provided satisfactory results esthetically and functionally.

Development of Creative Design and Construction Methods of Bridge Piers using 3D Model (3차원 모델 기반의 미적 교각 설계 및 시공 기술 개발)

  • Lee, Sang-Yong;Dong, Ngoc Son;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • Bridge piers typically have circular or rectangular shapes without decorative design. Prefabrication for accelerated construction has been widely adopted in bridge structures. Cost for steel formwork is a main restriction of creative irregular shapes. 3D modelling techniques allow creative design of columns and 3D printing provides possibility to minimize the fabrication cost. In this paper, 3D design process of bridge piers was suggested by converting 2D picture into 3D decorative shape. Formwork design using 3D printed panels was also proposed and mock-up tests were conducted. Precast columns need accurate geometry control from fabrication to assembly. Laser scanning and geometry control devices were adopted. Through the digitalized process of design, fabrication and assembly, creative design of structures can be realized in reasonable cost range.

Verification of Build Part and Tool Paths for Metal 3-D Printing Process (3차원 금속 프린팅 공정에서의 조형파트 진단 및 조형공구경로 검증)

  • Lee, Kyubok;Jee, Haeseong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.103-109
    • /
    • 2017
  • Metal 3D printing, which is an additive metal manufacturing (AMM) process, enables the development of full-density metallic tools and parts using metal powders that are precisely delivered and controlled for deposition with no powder bed. However, some unknown geometric defects and irregular geometric features on an STL model can possibly result in incorrect metal part fabrication after the build. This study first proposes a methodical approach for verifying the build part, including the missing facet problems in an STL model, by defining some irregular features that possibly exist on the part. Second, 2D tool paths on each build layer were investigated for detecting any singular region inside the layer. The method was implemented for building two sample STL models using a direct energy deposition process, and finally, it was visually simulated for diagnosis.

AR based ornament design system for 3D printing

  • Aoki, Hiroshi;Mitanin, Jun;Kanamori, Yoshihiro;Fukui, Yukio
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • In recent years, 3D printers have become popular as a means of outputting geometries designed on CAD or 3D graphics systems. However, the complex user interfaces of standard 3D software can make it difficult for ordinary consumers to design their own objects. Furthermore, models designed on 3D graphics software often have geometrical problems that make them impossible to output on a 3D printer. We propose a novel AR (augmented reality) 3D modeling system with an air-spray like interface. We also propose a new data structure (octet voxel) for representing designed models in such a way that the model is guaranteed to be a complete solid. The target shape is based on a regular polyhedron, and the octet voxel representation is suitable for designing geometrical objects having the same symmetries as the base regular polyhedron. Finally, we conducted a user test and confirmed that users can intuitively design their own ornaments in a short time with a simple user interface.

A Fundamental Study on the Fabrication of Human Model Bone Phantom using an Entry-Level 3D Printer: using FDM Method for the Femur Model (보급형 3D 프린터를 이용한 인체 모형 뼈 팬텀 제작의 기초연구: Femur 대상으로 적층형 출력 방식 이용)

  • Namkung, Eun-Jae;Kim, Do-Hee;Kim, So-Hui;Park, Se-Eun;Jung, Dabin;Park, Sang-Hyub;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.651-660
    • /
    • 2020
  • The purpose of this study was to create a phantom with a HU value similar to that of the human Femur using a 3D printer to replace the existing pig bone. A total of 372 people were analyzed to determine the HU value of human Femur. Using a 3D printer, a human bone model phantom was fabricated using PLA-Cu 20% and subjected to CT examination. Pig bones were 6 months old pigs, and bones 2 days after slaughter were used. As a result of the examination, the 3D printing phantom made with 80% of the internal filling showed a similar value to all data of the human body (p<0.05), and there was a difference from the pig bone (p>0.05). In addition, in the case of the HU value of Femur by age group, it was confirmed that the value of HU decreased as the age group increased (p<0.05). 3D printing and HU values confirmed a weak negative correlation with respect to the stacking height, but confirmed a strong positive correlation (R2 = 0.996) with 182.13±1.290 in the inner filling (p<0.05). In conclusion, it was confirmed that the human body model phantom using 3D printing can exhibit a similar level of HU value to the human body compared to the existing pig bone phantom, and this study will provide basic data for the production of a human body model phantom using a 3D printer.

3D Printing Based Patient-specific Orbital Implant Design and Production by Using A Depth Image (깊이 영상을 이용한 3D 프린팅 기반 환자 맞춤형 안와 임플란트의 설계 및 제작)

  • Seo, Udeok;Kim, Ku-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.903-914
    • /
    • 2020
  • In this paper, we present a novel algorithm to generate a 3D model of patient-specific orbital implant, which is finally produced by the 3D printer. Given CT (computed tomography) scan data of the defective orbital wall or floor, we compose the depth image of the defect site by using the depth buffering, which is a computer graphics technology. From the depth image, we compute the 3D surface which fills the broken part by interpolating the points around the broken part. By thickening the 3D surface, we get the 3D volume mesh of the orbital implant. Our algorithm generates the patient-specific orbital implant whose shape is accurately coincident to the broken part of the orbit. It provides the significant time efficiency for manufacturing the implant with supporting high user convenience.

Evaluating the Usefulness of Diagnosis through 3D Printing Technology (3D프린팅 기술을 이용한 심혈관 질환 진단의 유용성 평가)

  • Park, Chun-Kyu;Kim, Jung-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.691-696
    • /
    • 2021
  • In order to prevent and treat a patient's disease, the anatomical structure of the lesion through medical imaging is one of the important processes. However, there is a limit to the image displayed on the screen, so many studies are underway to overcome this by using 3D printing technology. To this end, this study implemented a three-dimensional cardiovascular model using actual patient image data, printed it out using a 3D printer, and conducted a usefulness test on current medical professionals. As a result of the usefulness evaluation, when the questionnaire conducted by a total of 5 people was converted to the Likert scale, the average value of all items showed a high result of 4.83 points, and the result of the cross-analysis was (P) = 10.000 (0.265), which was equally positive among all the questionnaires survey results were presented. Based on the results, it is expected that 3D printing technology will help advance medical technology.

Maxillary complete denture rehabilitation in flabby tissue patient fabricated by no-pressure impression technique with individual tray replicated treatment denture through 3D printing: A case report (3D 프린팅으로 치료 의치를 복제한 개인 트레이를 이용한 무압 인상을 통해 제작한 flabby tissue 환자의 상악 총의치 수복 증례)

  • Hong, Jun-Pyo;Bae, Jung-Yoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.3
    • /
    • pp.246-253
    • /
    • 2022
  • Flabby tissue is not rare for denture wearers. Mucostatic impression technique is necessary due to compromised retention and stability of denture resulting from distortion of mobile flabby tissue. In this report, individual tray was fabricated by model-scanning and 3D printing treatment denture. And then, mucostatic impression for flabby tissue was obtained by using individual tray modified with window technique. Definitive denture was fabricated based on information of treatment denture including incisal pontic arrangement, jaw relationship and occlusion.

Three-Dimensional Digital-Mold Modeling and Sand-Printing for Replication of Bronze Mirror

  • Jo, Young Hoon;Lee, Jungmin
    • Journal of Conservation Science
    • /
    • v.37 no.1
    • /
    • pp.25-33
    • /
    • 2021
  • To extend the application of digital technology to the replication of artifacts, meticulous details of the process and the diversity of three-dimensional (3D) printing output materials need to be supplemented. Thus, in this study, a bronze mirror with Hwangbichangcheon inscription was digitalized by 3D scanning, converted into a voxel model, and virtual conservation treatment was performed using a haptic device. Furthermore, the digital mold of the bronze mirror completed by Boolean modeling was printed using a 3D sand-printer. Such contactless replication based on digital technology reflects the stability, precision, expressivity, collectivity, durability, and economic feasibility of artifacts. Its application can be further extended to cultural products as well as such areas as education, exhibition, and research. It is expected to be in high demand for metal artifacts that require casting. If empirical studies through experimental research on casting are supplemented in the future, it could extend the application of digital technology-based contactless replication methods.