• Title/Summary/Keyword: 3D printing individual tray

Search Result 5, Processing Time 0.022 seconds

Maxillary complete denture rehabilitation in flabby tissue patient fabricated by no-pressure impression technique with individual tray replicated treatment denture through 3D printing: A case report (3D 프린팅으로 치료 의치를 복제한 개인 트레이를 이용한 무압 인상을 통해 제작한 flabby tissue 환자의 상악 총의치 수복 증례)

  • Hong, Jun-Pyo;Bae, Jung-Yoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.3
    • /
    • pp.246-253
    • /
    • 2022
  • Flabby tissue is not rare for denture wearers. Mucostatic impression technique is necessary due to compromised retention and stability of denture resulting from distortion of mobile flabby tissue. In this report, individual tray was fabricated by model-scanning and 3D printing treatment denture. And then, mucostatic impression for flabby tissue was obtained by using individual tray modified with window technique. Definitive denture was fabricated based on information of treatment denture including incisal pontic arrangement, jaw relationship and occlusion.

Fabrication of denture by using the individual tray duplicated an existing denture through 3D printing: A case report (3D 프린팅을 통해 기존의치를 복제하여 개인트레이로 활용한 총의치 제작 증례)

  • Park, Juyoung;Park, Sangwon;Lim, Hyun-Pil;Park, Chan;Yun, Kwi-Dug
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.508-514
    • /
    • 2021
  • In this report, Replicated denture was fabricated by 3d printing after scanning the existing denture. It was used as an individual tray in closed-mouth technique. It reduced laboratory process and clinical time. Also it helped in facial evaluation and tooth arrangement. Compared to open-mouth technique, the number of visits was reduced, and the patient's adaptability to new denture was enhanced by utilized various information of the existing denture, including vertical dimension.

Application of 3D printer in dental clinic (치과 진료실에서 3D 프린트의 활용)

  • Kim, Hyun Dong
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.27 no.2
    • /
    • pp.82-96
    • /
    • 2018
  • 3D printing is a process of producing 3d object from a digital file in STL format by joining, bonding, sintering or polymerizing small volume elements by layer. The various type of 3d printing is classified according to the additive manufacturing strategies. Among the types of 3D printer, SLA(StereoLithography Apparatus) and DLP(Digital Light Processing) 3D printer which use polymerization by light source are widely used in dental office. In the previous study, a full-arch scale 3d printed model is less precise than a conventional stone model. However, in scale of quadrant arch, a 3d printed model is significantly precise than a five-axis milled model. Using $3^{rd}$ Party dental CAD program, full denture, provisional crowns and diagnostic wax-up model are fabricated by 3d printer in dental office. In Orthodontics, based on virtual setup model, indirect bracket bonding tray can be generated by 3d printer. And thermoforming clear aligner can be fabricated on the 3d printed model. 3D printed individual drilling guide enable the clinician to place the dental implant on the proper position. The development of layer additive technology enhance the quality of 3d printing object and shorten the operating time of 3D printing. In the near future, traditional dental laboratory process such as casting, denture curing will be replaced by digital 3D printing.

Fabrication of complete denture using 3D printing: a case report (3D 프린팅을 이용한 양악 총의치 제작 증례)

  • Lee, Eunsu;Park, Chan;Yun, Kwidug;Lim, Hyun-Pil;Park, Sangwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.202-210
    • /
    • 2022
  • Recently with the advance in digital dentistry, the fabrication of dentures using computer-aided design and computer-aided manufacturing (CAD-CAM) is on the rise. The denture designed through a CAD software can be produced in a 3-dimensional manufacturing process. This process includes a subtractive processing method such as milling and an additive processing method such as 3D printing and in which it can be applied efficiently in more complex structures. In this case, complete dentures were fabricated using Stereolithography (SLA)-based 3D printing to shorten the production time and interval of visits in patient with physical disabilities due to cerebral infarction. For definitive impression, the existing interim denture was digitally replicated and used as an individual tray. The definitive impression obtained with polyvinyl siloxane impression material was including information about the inclination and length of the maxillary anterior teeth, vertical dimension, and centric relation. In addition, facial scan data with interim denture was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a FDA-approved liquid photocurable resin. The denture showed adequate retention, support, and stability, and results were satisfied functionally and aesthetically.

Fabrication of complete denture using conventional method and monolithic digital denture system: a case report (전통적 제작법과 모놀리식(monolithic) 디지털 의치 시스템을 이용한 상·하악 총의치 동시 수복 증례)

  • Young-Baek Park;Ga-Hyun Lee;Young-Gyun Song
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.1
    • /
    • pp.6-19
    • /
    • 2024
  • With the advancement of Computer-Aided Design/Computer-Aided Manufacturing (CAD-CAM) technology, fabrication of dentures using this technology has gained popularity. As one of CAD-CAM technologies, digital complete denture system has been introduced, which fabricates complete dentures using subtractive manufacturing of monolithic block containing both the color of a denture base and an artificial tooth. In this case, two pairs of upper and lower dentures were fabricated for two patients. Two pairs of complete dentures were fabricated for a 74-year-old male and a 73-year-old female respectively by conventional denture fabrication method and digital method of milling. To obtain a digital complete denture, monolithic block (Ivotion, Ivoclar Vivadent, Schaan, Liechtenstein) was chosen for the materials to fabricate the digital complete dentures. An individual tray was designed using CAD software and manufactured by 3D printing technique. The final impression and interocclusal relationship were recorded using the fabricated individual tray. The final impression was scanned, and the complete denture design and try-in denture were 3D printed using CAD-CAM software. Subsequently, the monolithic block was milled, and the final dentures were fabricated and tried on patients. Previously mentioned two patient cases compared and analyzed stability, fit, speaking, mastication, aesthetics, and patient satisfaction of two pairs of dentures: one fabricated using CAD-CAM system and the other using traditional methods. This was performed to evaluate and report the findings from both denture-making approaches.