• 제목/요약/키워드: 3D orthogonal woven composite

검색결과 8건 처리시간 0.02초

3D 직교 직물 복합재료의 충격 거동 및 특성에 관한 수치해석 (Low-Velocity Impact Characterizations of 3D Orthogonal Woven Composite Plate)

  • 지국현;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.170-174
    • /
    • 2002
  • In this study, the material characterization and the dynamic behavior of 3D orthogonal woven composite materials has been studied under transverse central low-velocity impact condition by means of the micromechanical model using finite elements. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is stacked in x-y-z direction repeatedly. First, the mechanical properties of 3D orthogonal woven composites are obtained by means of virtual experiment using full scale Finite Element Analysis based on the DNS concepts, and the computed elastic properties are validated by comparison to available experimental results[9]. Second, using the implementation of this validated micromechanical model, 3D transient finite-element analysis is performed considering contact and impact, and the impact behavior of 3D orthogonal woven composite is investigated. A comparison study will be carried out in terms of energy absorption capabilities.

  • PDF

3D 직교 직물 복합재료 평판의 미시구조를 고려한 손상 거동 연구 (A Study of damage behaviors of 3D orthogonal woven composite plates under Low velocity Impact)

  • 지국현;양정식;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.53-56
    • /
    • 2005
  • In this study, the material characterization and the dynamic behavior of 3D orthogonal woven composite materials has been studied under transverse central low-velocity impact condition by means of the micromechanical model using finite elements. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is stacked in x-y-z direction repeatedly. First, the mechanical properties of 3D orthogonal woven composites arc obtained by means of virtual experiment using full scale Finite Element Analysis based on the DNS concepts, and the computed elastic properties arc validated by comparison to available experimental results. Second, using the implementation of this validated micromechanical model, 3D transient finite-clement analysis is performed considering contact and impact, and the impact behavior of 3D orthogonal woven composite is investigated. A comparison study with the homogenized model will be carried out in terms of global and local behaviors.

  • PDF

직교 직물 복합재료 물성치 예측을 위한 가상 수치 실험 (Virtual Experimental Characterization of 3D Orthogonal Woven Composite Materials)

  • 이창성;신헌;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.205-210
    • /
    • 2001
  • In this work, virtual material characterization of 3D orthogonal woven composites is performed to predict the elastic properties by a full scale FEA. To model the complex geometry of 3D orthogonal woven composites, an accurate unit structure is first prepared. The unit structure includes warp yarns, filler yarns, stuffer yams and resin regions and reveals the geometrical characteristics. For this virtual experiments by using finite element analysis, parallel multifrontal solver is utilized and the computed elastic properties are compared to available experimental results and the other analytical results. It is founded that a good agreement between material properties obtained from virtual characterization and experimental results. Using the method of this virtual material characterization, the effects of inconsistent filler yarn distribution on the in-plane shear modulus and filler yarn waviness on the transverse Young's modulus are investigated. Especially, the stiffness knockdown of 3D woven composite structures is simulated by virtual characterization. Considering these results, the virtual material characterization of composite materials can be used for designing the 3D complex composite structures and may supplement the actual experiments.

  • PDF

3차원 직조형 금속복합재료의 제조와 특성분석 (Fabrication and Characterization of Al Matrix Composites Reinforced with 3-D Orthogonal Carbon Textile Preforms)

  • 이상관;변준형;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.188-191
    • /
    • 2002
  • 3-D orthogonal woven carbon/Al composites were fabricated using a pressure infiltration casting method. Especially, to minimize geometrical deformation of fiber pattern and $Al_4C_3$ formation, the process parameters of the minimum pressurizing force, melting temperature, delay and holding time of molten aluminum pressurizing was optimized through the PC-controlled monitoring system. Resonant ultrasound spectroscopy (RUS) was utilized to measure the effective elastic constants of 3-D orthogonal woven carbon/Al composites. The CTE measurement was conducted using strain gages in a heating oven.

  • PDF

동적 충격하중에 의한 미소균열 직조복합구조의 특성 (Micro-Cracked Textile Composite Structures‘ Behavior on the Dynamic Impact Loading)

  • 허해규;김민성;정재권;김용진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.222-227
    • /
    • 2008
  • This study is focused on an integrated numerical modeling enabling one to investigate the dynamic behavior and failure of 2-D textile composite and 3-D orthogonal woven composite structures weakened by micro-cracks and subjected to an impact load. The integrated numerical modeling is based on: I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, II) development of an efficient computational approach enabling one to perform transient response analyses of 2-D plain woven and 3-D orthogonal woven composite structures featuring the matrix cracking and exposed to time-dependent loads, III) determination of the structural characteristics of the textile-layered composites and their degraded features under various geometrical yarn shapes, and finally, IV) assessment of the implications of stiffness degradation on dynamic response to impact loads.

  • PDF

2D 및 3D 직조형 복합재료의 충격특성 (Impact Properties of 2D and 3D Textile Composites)

  • 변준형;엄문광;황병선;송승욱;강형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.91-94
    • /
    • 2003
  • Laminated composites are liable to fatal damage under impact load due to the fact that they have no reinforcement in the thickness direction. To overcome the inherent weakness, three dimensional (3D) textile reinforcements have drawn much interests. In this paper, impact performance of 2D and 3D textile composites has been characterized. For 2D composites, fiber bundle size and fiber pattern have been varied. For 3D composites, orthogonal woven preforms of different density and type of through-thickness fibers have been studied. To assess the damage after the impact loading, specimens were subjected to C-scan nondestuctive inspection. Compression after impact (CAI) were also conducted in order to evaluate residual compressive strength.

  • PDF

미시구조를 고려한 3차원 직교직물 복합재료 평판의 저속충격 거동해석 (low Velocity Impact Behavior Analysis of 3D Woven Composite Plate Considering its Micro-structure)

  • 지국현;김승조
    • Composites Research
    • /
    • 제18권4호
    • /
    • pp.44-51
    • /
    • 2005
  • 본 논문에서는 3차원 직교 직물 복합재료의 구성성분인 얀(Yarn)의 기하학적인 형상을 고려하여 직접수치모사(DNS) 모델을 개발하고 이를 이용하여 직교 직물 복합재료 평판의 저속충격 현상을 모사하였다. 미시구조를 보다 상세하고 정확하게 고려하기 위하여 토우 간격과 굴곡 등을 고려한 단위 구조를 제시하고 이를 이용하여 DNS 기반의 평판모델을 구현하였다. 정적 가상 실험을 통하여 얻은 DNS 모델의 거시적 등가 물성치를 바탕으로 한 거시기계학적 해석과의 비교하였고, DNS 모델을 이용하여 기존의 거시기계학적 모델에서 구현이 어려운 기하학적인 형상 차이에 따른 저속충격 현상의 영향을 고찰하였다. 그리고 보다 실제 실험에 가까운 가상 시편의 크기를 고려하고 해석의 효율성을 높이기 위하여 DNS개념에 기반한 멀티스케일 모델을 개발하여 거시/미시 해석 결과 특성을 함께 고찰하였다.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.