• Title/Summary/Keyword: 3D object view

Search Result 182, Processing Time 0.022 seconds

The 3D Geometric Information Acquisition Algorithm using Virtual Plane Method (가상 평면 기법을 이용한 3차원 기하 정보 획득 알고리즘)

  • Park, Sang-Bum;Lee, Chan-Ho;Oh, Jong-Kyu;Lee, Sang-Hun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1080-1087
    • /
    • 2009
  • This paper presents an algorithm to acquire 3D geometric information using a virtual plane method. The method to measure 3D information on the plane is easy, because it's not concerning value on the z-axis. A plane can be made by arbitrary three points in the 3D space, so the algorithm is able to make a number of virtual planes from feature points on the target object. In this case, these geometric relations between the origin of each virtual plane and the origin of the target object coordinates should be expressed as known homogeneous matrices. To include this idea, the algorithm could induce simple matrix formula which is only concerning unknown geometric relation between the origin of target object and the origin of camera coordinates. Therefore, it's more fast and simple than other methods. For achieving the proposed method, a regular pin-hole camera model and a perspective projection matrix which is defined by a geometric relation between each coordinate system is used. In the final part of this paper, we demonstrate the techniques for a variety of applications, including measurements in industrial parts and known patches images.

Non-glasses Stereoscopic 3D Floating Hologram System using Polarization Technique

  • Choi, Pyeongho;Choi, Yoonhee;Park, Misoo;Kwon, Soonchul;Lee, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2019
  • The image projected onto the screen of the floating hologram is no more than a two-dimensional image. Although it creates an illusion that an object appears to float in space as it moves around while showing its different parts. This paper has proposed a novel method of floating 3D hologram display to view stereoscopic three-dimensional images without putting on glasses. The system is comprised of a sharkstooth scrim screen, projector, polarizing filter for the projector, and a polarizing film to block the image projected from the sham screen. As part of the polarization characteristics, the background image and the front object have completely been separated from each other with the stereoscopic 3D effect successfully implemented by the binocular disparity caused by the distance between the two screens.

Video Augmentation by Image-based Rendering

  • Seo, Yong-Duek;Kim, Seung-Jin;Sang, Hong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.147-153
    • /
    • 1998
  • This paper provides a method for video augmentation using image interpolation. In computer graphics or augmented reality, 3D information of a model object is necessary to generate 2D views of the model, which are then inserted into or overlayed on environmental views or real video frames. However, we do not require any three dimensional model but images of the model object at some locations to render views according to the motion of video camera which is calculated by an SFM algorithm using point matches under weak-perspective (scaled-orthographic) projection model. Thus, a linear view interpolation algorithm is applied rather than a 3D ray-tracing method to get a view of the model at different viewpoints from model views. In order to get novel views in a way that agrees with the camera motion the camera coordinate system is embedded into model coordinate system at initialization time on the basis of 3D information recovered from video images and model views, respectively. During the sequence, motion parameters from video frames are used to compute interpolation parameters, and rendered model views are overlayed on corresponding video frames. Experimental results for real video frames and model views are given. Finally, discussion on the limitations of the method and subjects for future research are provided.

  • PDF

3D Object Recognition Using Appearance Model Space of Feature Point (특징점 Appearance Model Space를 이용한 3차원 물체 인식)

  • Joo, Seong Moon;Lee, Chil Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.2
    • /
    • pp.93-100
    • /
    • 2014
  • 3D object recognition using only 2D images is a difficult work because each images are generated different to according to the view direction of cameras. Because SIFT algorithm defines the local features of the projected images, recognition result is particularly limited in case of input images with strong perspective transformation. In this paper, we propose the object recognition method that improves SIFT algorithm by using several sequential images captured from rotating 3D object around a rotation axis. We use the geometric relationship between adjacent images and merge several images into a generated feature space during recognizing object. To clarify effectiveness of the proposed algorithm, we keep constantly the camera position and illumination conditions. This method can recognize the appearance of 3D objects that previous approach can not recognize with usually SIFT algorithm.

Hole Filling Algorithm for a Virtual-viewpoint Image by Using a Modified Exemplar Based In-painting

  • Ko, Min Soo;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1003-1011
    • /
    • 2016
  • In this paper, a new algorithm by using 3D warping technique to effectively fill holes that are produced when creating a virtual-viewpoint image is proposed. A hole is defined as the region that cannot be seen in the reference view when a virtual view is created. In the proposed algorithm, to reduce the blurring effect that occurs on the hole region filled by conventional algorithms and to enhance the texture quality of the generated virtual view, Exemplar Based In-painting algorithm is used. The boundary noise which occurs in the initial virtual view obtained by 3D warping is also removed. After 3D warping, we estimate the relative location of the background to the holes and then pixels adjacent to the background are filled in priority to get better result by not using only adjacent object's information. Also, the temporal inconsistency between frames can be reduced by expanding the search region up to the previous frame when searching for most similar patch. The superiority of the proposed algorithm compared to the existing algorithms can be shown through the experimental results.

A View-Frustum Culling Technique Using OpenGL for Large Polygon Models (OpenGL을 이용한 대용량 Polygon Model의 View-Frustum Culling 기법)

  • Cho, Doo-Yeoun;Jung, Sung-Jun;Lee, Kyu-Yeul;Kim, Tae-Wan;Choi, Hang-Soon;Seong, Woo-Jae
    • Journal of Korea Game Society
    • /
    • v.1 no.1
    • /
    • pp.55-60
    • /
    • 2001
  • With rapid development of graphic hardware, researches on Virtual Reality and 3D Games have received more attention than before. For more realistic 3D graphic scene, objects were to be presented with lots of polygons and the number of objects shown in a scene was remarkably increased. Therefore, for effective visualization of large polygon models like this, view-frustum culling method, that visualizes only objects shown in the screen, has been widely used. In general, the bounding boxes that include objects are generated firstly, and the boxes are intersected with view-frustum to check whether object is in the visible area or not. Recently, an algorithm that can check in-out test of objects using OpenGL's selection mode, which is originally used to select the objects in the screen, is suggested. This algorithm is fast because it can use hardware acceleration. In this study, by implementing and applying this algorithm to large polygon models, we showed the efficiency of OpenGL assisted View-Frustum Culling algorithm. If this algorithm is applied to 3D games that have to process more complicated characters and landscapes, performance improvement can be expected.

  • PDF

A Study on Sketch Input Technique by Surface of 3D Object. (3D 객체 표면에 근거한 Sketch 입력기법 연구)

  • Sin, Eun-Joo;Choy, Yoon-Chul;Lim, Soon-Bum
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1137-1142
    • /
    • 2006
  • 3D 가상공간을 협업에 효과적으로 이용하기 위해서는 3D 가상공간에서 빠르고 쉽게 의사를 표현할 수 있는 기술이 필요하다. 본 연구에서는 이런 효과적인 의사표현 방법으로 Sketch 기법을 제안한다. Sketch 기법은 간단한 2D 선들의 표현을 통해 매우 빠르게 아이디어를 표현 할 수 있으며, 의도에 따라 부분을 강조하거나 가감할 수 있기 때문에 좀 더 직관적으로 의도를 전달 할 수 있다. 그래서 이러한 Sketch 를 공간상에서 손쉽게 3D 모델의 표면이나 공간 위에 입력하고, 입력한 Sketch 를 3D 가상공간과 연동하여 보여 줌으로써 쉽게 3D 가상공간 안에 Sketch 로 의견을 표현 할 수 있게 하는 Sketch 기반 인터페이스를 연구 하였다. Sketch 기법을 3D 가상공간에 적용하기 위해서는 3D 가상공간 상에서 2D Sketch 를 입력하기 위한 방법과 입력 시 발생할 수 있는 위상차의 문제를 해결해야 한다. 이 연구에서는 2D Sketch 입력을 대상 3D 객체 중심에서 Sketch할 부분의 Sketch plain 을 선택 및 생성함으로써 입력하는 방법을 연구하였으며, 입력 시 발생하는 위상차는 View-point 및 View-Plain 의 이동 등을 통해 해결점을 찾고자 하였다. 그리고 추후 연구를 통해 Sketch 를 Annotation 으로 활용, 협업에서 필요로 하는 Sketch Annotation 으로 개발하고자 한다.

  • PDF

3D Reconstruction using multi-view structured light (다시점 구조광을 이용한 3D 복원)

  • Kang, Hyunmin;Park, Yongmun;Seo, Yongduek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.288-289
    • /
    • 2022
  • In this paper, we propose a method of obtaining high density geometric information using multi-view structured light. Reconstruction error due to the difference in resolution between the projector and the camera occurs when reconstruction a 3D shape from a structured light system to a single projector. This shows that the error in the point cloud in 3D is also the same when reconstruction the shape of the object. So we propose a high density method using multiple projectors to solve such a reconstruction error.

Virtual View Generation by a New Hole Filling Algorithm

  • Ko, Min Soo;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1023-1033
    • /
    • 2014
  • In this paper, performance improved hole-filling algorithm which includes the boundary noise removing pre-process that can be used for an arbitrary virtual view synthesis has been proposed. Boundary noise occurs due to the boundary mismatch between depth and texture images during the 3D warping process and it usually causes unusual defects in a generated virtual view. Common-hole is impossible to recover by using only a given original view as a reference and most of the conventional algorithms generate unnatural views that include constrained parts of the texture. To remove the boundary noise, we first find occlusion regions and expand these regions to the common-hole region in the synthesized view. Then, we fill the common-hole using the spiral weighted average algorithm and the gradient searching algorithm. The spiral weighted average algorithm keeps the boundary of each object well by using depth information and the gradient searching algorithm preserves the details. We tried to combine strong points of both the spiral weighted average algorithm and the gradient searching algorithm. We also tried to reduce the flickering defect that exists around the filled common-hole region by using a probability mask. The experimental results show that the proposed algorithm performs much better than the conventional algorithms.

A Study on Design and Analysis of Method for MR-based 3D Biological Object Recognition and Matching (MR 기반 3차원 생체 객체 인식 및 정합을 위한 방법 설계와 해석 연구)

  • Jin-Pyo Jo;Yong-Bae Jeong
    • Journal of Platform Technology
    • /
    • v.12 no.2
    • /
    • pp.23-33
    • /
    • 2024
  • The development of mixed reality (MR) technology has a great influence on the research and development of medical support equipment. In particular, it supports to respond effectively to emergencies occurring in the field. MR technology enables access to first aid and field support by combining virtual information with the real world so that users can see virtual objects in the real world. However, due to the nature of the equipment, there is a limitation in accurately matching virtual objects based on user vision. To improve these limitations, this paper proposes a 3D biometric object recognition and matching algorithm in the MR environment. As a result of the experiment, when a virtual object is rendered and visualized while equipped with an optical-based HMD from the user's side, it was possible to reduce the user's field of view error and eliminate the joint-loss phenomenon during skeleton recognition. The proposed method can reduce errors between the real user's field of view and the virtual image and provide a basis for reducing errors that occur in the process of virtual object recognition and matching. It is expected that this study will contribute to improving the accuracy of the telemedicine support system for first aid.

  • PDF