• Title/Summary/Keyword: 3D non-homogeneous model

Search Result 16, Processing Time 0.022 seconds

Study on the Base and Subbase Method of Agricultural Road -On the Resilient Modulus Characteristics of the Subgrade and Cement Treated Base- (농도의 기층 및 보조기층 공법연구 -노상 및 시멘트 안정 처리층의 Mr 특성을 중심으로-)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.66-81
    • /
    • 1989
  • The characteristics of resilient modulus(Mr) which dominates the life of pavement and the design of pavement were investigated on the test specimens which were cement treated and non-treated of the three different soil types. The results are summarized as follows : 1. The resilient modulus was decreased by increasing the cyclic deviator stress ($\sigma$d) , especially the resilient modulus was gradually decreased or sometimes increased when the value of ad was greater than 0.75- 1. 0kg/cm$^2$. 2. The resilient modulus was increased by increasing the homogeneous confined stress ($\sigma$do) and such phenomena were distinct on the coarse soils. 3. The resilient modulus was increased by increasing the ratio of confined stress(Kc), and this phenomena were eminent on the coarse soils too, and the higher permanent strain was showed by increasing the value of Kc. 4. In the drained cyclic triaxial compression test, the value of ad, Kc, and (Oho) was introduced by the following interrelated equations which were similar to the Mr model of Cole. Kcn/Mr=K1(J$_2$/ $\tau$oct)K2 ............. (coarse soli) Mcn/Mr=K3($\sigma$dp/ $\tau$f)k4 ...............(fine soils) 5. The stress path was not much affected by the value of Mr, however, moisture content, dry desity, and contant of fines affected the value of Mr. 6. In the soil-cement specimens, the resilient compression strain($\varepsilon$d) was decreased by the increment of the $\sigma$ho, and Mr was decreased by increasing the $\sigma$d 7. In the flexible pavement. the cement treated layer should be designed not to fail by the fatigue before the designed traffic load, and actually the pavement could cover the traffic load to a certain extent under the post-crack phase, therefore farther studies on this phenomena' are required in the design analysis. 8. The finite element computer program (ANALYS) was used for displacement analysis of pavement containing the cement-treated layer, The result showed that the program used for this analysis was proved to be usable.

  • PDF

A study on interface heat transfer coefficient in hot forging of Al6061 by experiments and FE analysis (Al6061 열간단조시 계면열전달계수에 관한 연구)

  • Kwon J. W.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.219-222
    • /
    • 2005
  • The temperature difference between die and workpiece has frequently caused various surface defects. The non-homogeneous temperature distribution of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperatures were mainly affected by the coefficient of thermal contact conductance. The precise coefficient is necessary to predict accurately the temperature changes of die and workpiece. The experiment is preformed to measure the temperature distribution of die and workpiece in closed die upsetting. And then, the coefficient is classified into function of pressure and confirmed by the comparison between experiments and FE analyses using the other model. The FE analysis to predict the temperature distribution is performed by commercial software $DEFORM-3D^{TM}$. However, it might be impossible to measure directly the temperature distribution of forged part. Therefore, the comparisons between measured temperature and predicted values are performed with the hardness of Al6061-forged part.

  • PDF

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Effect of Inhomogeneity correction for lung volume model in TPS (Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과)

  • Chung SeYoung;Lee SangRok;Kim YoungBum;Kwon YoungHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.

  • PDF

Integrated Wet Oxidation and Aerobic Biological Treatment of the Wastewater Containing High Concentration of Phenol (고농도 페놀 폐수의 습식산화와 호기성 생물학적 통합처리)

  • Choi, Ho-Jun;Lee, Seung-Ho;Yu, Yong-Ho;Yoon, Wang-Lai;Suh, II-Soon
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.244-248
    • /
    • 2007
  • The treatment of a model wastewater containing high concentration, 10 $g/{\ell}$, of phenol in an integrated wet oxidation-aerobic biological treatment was investigated. Partial wet oxidation under mild operating conditions was capable of converting the original phenol to biodegradable organic acids such as maleic acid, formic acid and acetic acid, the solution of which was subjected to the subsequent aerobic biological treatment. The wet oxidation was carried out at 150$^{\circ}C$ and 200$^{\circ}C$ and the initial pH of 1 to 12. The high temperature of 200$^{\circ}C$ and the acidic initial condition in the wet oxidation led to effluents of which biodegradability was higher in the subsequent biological oxidation process, as assessed by chemical oxygen demand (COD) removal. Homogeneous catalyst of $CuSO_4$ was also used for increasing the oxidation rate in the wet oxidation at 150$^{\circ}C$ and initial pH of 3.0. However, the pretreatment with the catalytic wet oxidation resulted in effluents which were less biodegradable in the aerobic biological process compared to those out of the non-catalytic wet oxidation at the same operating conditions.

Integrated Wet Oxidation and Aerobic Biological Treatment of the Quinoline Wastewater (퀴놀린 폐수의 습식산화와 호기성 생물학적 통합처리)

  • Kwon, S.S.;Moon, H.M.;Lee, Y.H.;Yu, Yong-Ho;Yoon, Wang-Lai;Suh, Il-Soon
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.245-250
    • /
    • 2008
  • The treatment of a model wastewater containing quinoline in an integrated wet oxidation-aerobic biological treatment was investigated. Partial wet oxidation under mild operating conditions was capable of converting the original quinoline to biodegradable organic acids such as nicotinic, formic and acetic acid, the solution of which was subjected to the subsequent aerobic biological treatment. The wet oxidation was carried out at 250$^{\circ}C$ and the initial pH of 7.0, and led to effluents of which nicotinic acid was oxidized through 6-hydroxynicotinic acid by a Bacillus species in the subsequent aerobic biological treatment. Either homogeneous catalyst of $CuSO_4$ or phenol, which is more degradable in the wet oxidation compared to quinoline, was also used for increasing the oxidation rate in the wet oxidation of quinoline at 200$^{\circ}C$. The oxidation of quinoline in the catalytic wet oxidation and the wet co-oxidation with phenol resulted in effluents of which nicotinic acid was biodegradable earlier in the aerobic biological treatment compared to those out of the non-catalytic wet oxidation at 250$^{\circ}C$. However, the lag phase in the biodegradation of nicotinic acid formed out of the wet oxidation at 250$^{\circ}C$ was considerably shortened after the adaptation of Bacillus species used in the aerobic biological treatment with the effluents of the quinoline wet oxidation.