• Title/Summary/Keyword: 3D motion analysis program

Search Result 99, Processing Time 0.024 seconds

Effects of Earthquake on Tunnel Stability (지진이 터널 안정에 미치는 영향)

  • 박남서
    • Explosives and Blasting
    • /
    • v.14 no.2
    • /
    • pp.71-80
    • /
    • 1996
  • A series of nurmerical analysse for the earhtquake of Iran railway tunnles under construction by NATM(New Astrian Tunnelling Method) were careid out throuth a pseudo-dynamic analyses techique used in a FFM computer program, DWTAP(Daewoo Tunnel Analysis Program), and the results are described in the paper. The analyses were performErl for two case;one is for the primary supports and the other is for the rompletEd permanent roncrete lining. The horizontal and verical groW1d accelerations for the design were estimatEd as 0.34 g and 0.23 g, respectively based on the historical reismic rerords in the proj3et area and the empirical equations. The results show that the turmel would be safe W1der the anticipitOO earthquake motion with the permanent roncrete lining, but some minor cracks rnigt be developErl in the primary shotcrete lining without any significant structural damages.

  • PDF

Analysis of Sports Biomechanical Variable on the Motions of Left and Right Spikes of Volleyball (배구 레프트 스파이크와 라이트 스파이크 동작에 대한 운동역학적 변인 비교 분석)

  • Cho, Ju-Hang;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.125-134
    • /
    • 2006
  • The purpose of this study was to analyze the Biomechanical elements by looking at the differences on the motions of the right and left spikes of right-handed offense volleyball players, using 3D image analysis and force platform. For that purpose, spike motions of six male university volleyball players were recorded three times each using two 16mm high speed cameras and the speed of recording was set at 60 frames/sec. The coordinated raw data was leveled as 6Hz using low pass filtering method and the calculation of 3D coordinates was done by using a DLT (Direct Linear Transformation) method. Also KWON 3D program was used to analyze the variables. Through the experiments and research, the following results were found: That is, in case of the right spike, the required time from the toss to the impact, which affected the success rate of offense showed as longer and on the take-off, the exact timing to touch the ball was longer because the pace between right and left feet was wider, and also after the jump, the distance between the feet indicated shorter, than the left. In addition, the degree of somersault and horizontal adduction of shoulder joint was smaller and the degree of medial rotation of shoulder joint showed bigger than the left, so it indicated that it was not centered on the body, but by the arm with an axis of shoulder using a swing motion. After the impact, the speed of the ball indicated slower compared to the left spike.

A kinematic analysis of the attacking-arm-kuzushi motion as to pattern of morote-seoinage in judo (유도 양팔업어치기 패턴에 따른 공격팔 기울이기 동작의 운동학적 분석)

  • Kim, Eui-Hwan;Yoon, Hyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.73-94
    • /
    • 2003
  • The purpose of this investigation was to analyze A kinematic analysis of the Kuzushi-arm motion when performing Morote-Seoinage in judo who was 5 females university representative judokas of light weight category in judo, and filmed on video cameras(60field/s). The data of this study digitizied by KWON3D 2.1 program computed the average and standard deviation calculated individual 5 trials with Programing Lab view 6i. From the data analysis & discussion, the following conclusions were drawn : 1) distance variable of attacking hand arm in kuzushi motion Left right(X direction) displacement variable was all of A, B, C pattern with moving left to right and leaning. Strip of displacement variable was ordo. to C(55.6cm), A(53.3cm), B(43.9cm) pattern, C pattern largely leaned to left Front Rear(Y direction) displacement variable was different A($131.3cm{\pm}3.1cm$), B($128.7{\pm}4.0cm$) and C(111.0cm) on ready position, 3 pattern leaned to rear direction. Strip of displacement was order to B(43.4cm), A(41.1cm) and C pattern(28.3cm). Up down(Z direction) displacement variable was all of A, B, C pattern leaned to up in the Kuzushi-phase and leaned to down in the Kake-phase. Strip of displacement was order to A(83.9cm), B(80.4cm), C pattern(71.9cm). 2) Shoulder joint angle variable Flexion and extension Ready position' angle was A($138.3{\pm}4.9^{\circ}$), B($142.9{\pm}3.7^{\circ}$) and C($164.5^{\circ}$) pattern, strip of flexion extension was order to C($80.9^{\circ}$), A($79.9^{\circ}$) and B($39.0^{\circ}$) pattern, greatly C pattern had largely angle change. Adduction and abduction : B and C pattern's angle change were adduction and abduction in the Kuzushi-phase after adduction in the Kake phase, A pattern's angle change was abduction in the Kuzushi-phase after adduction in the Kake phase. internal and external rotation : 3 pattern were internal rotation in the Tsukuri phase and external rotation in the Kake phase. After B and C pattern were external rotation and A pattern was internal rotation. 3) Elbow joint angle variable Flexion and extension 3 pattern's ready position angle were A($142.0{\pm}4.4^{\circ}$), B($123.5{\pm}5.5^{\circ}$) and C($105.5^{\circ}$) and flexion. Strip of flexion extension were order to A($57.9^{\circ}$), C($34.6^{\circ}$) and B($25.2^{\circ}$) pattern.

A Study about the Training Program for the Kolman Technique on the Horizontal Bars (체조 철봉 콜만 기술동작의 훈련프로그램 적용 및 향상도평가)

  • Back, Jin-Ho;Park, Jong-Chul;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2009
  • This study develops a technique training program to enhance the completion of Kolman, the high air flight technique, and applies it to two national athletes of the horizontal bar, one of the gymnastic events, for eight weeks. After that, their improvement was measured through 3D motion analysis to help them elevate their performance. The training program includes swing, hand release, twist, and bar hold, and its implementation produced the results stated below. They were made to practice the motion in the following way. After the hand-standing of giant swing which initiates the motion, they lift their body upward a little bit more. Next, they take their body down almost like a vertical descent and make a deep tap swing. Instead of doing the tap swing which widens the flection of hip and shoulder joints, while body revolution is more emphasized in particular, they release the bar as raising the centroid of their body sufficiently. During the flight, they try to narrow every joint in their body. As a result, the bar's elasticity becomes greatly increased, and since the backing rate of their body gets higher, the centripetal force of the swing is improved that they can release the bar in the higher position. In addition, because they can erect their body faster during the flight, they can perform comfortable twist and revolution in the air. They can also adjust the direction of the flight easily without too much concern for the proper timing of hand release as they rise. Thereby, they can not only maintain adequate distance from the bar for the bar hold but also ensure enough distance for body revolution and twist.

Kinematic Analysis of Mid-Race in Men's 100-m Final during IAAF World Championships, Daegu 2011 (2011 대구세계육상선수권대회 100 m 남자 결승전 중간질주구간의 운동학적 분석)

  • Ryu, Ji-Seon;Ryu, Jae-Kyun;Kim, Tae-Sam;Park, Young-Jin;Hwang, Won-Seob;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.511-520
    • /
    • 2011
  • The purpose of this study was to provide scientific information to track and field coaches and athletes through the analyses of the biomechanics characteristics of the top 4 sprinters in the men's 100 m final in the IAAF World Championships Daegu 2011. Twelve video cameras (Sony, Japan) were used to capture the mid portion of the race (40 m - 70 m) with a sampling frequency of 60Hz. Biomechanical variables including the right ankle, knee and hip angles, the trunk angle, and the velocity of center of mass (COM) in the running direction, were calculated with the Kwon 3D program (Visol, Korea). Correlation coefficients between the COM velocity and each variables were calculated using Matlab 2008a (MathWorks, USA) at an alpha level of 0.05. The findings indicated that Yohan Blake (JAM) showed greater range of motion at the ankle and hip. Walter Dix(USA) showed greater knee and trunk movement, and Kim Collins (SKN) showed more dorsi-flexed and extended trunk angles during the race. Finally, Christophe Lemaitre (FRA) showed more plantar-flexed ankle with a less trunk motion, throughout the analyzed race.

Performance analysis of the optical displacement sensor for accurate in-plane motion measurement (정확한 평면운동 측정을 위한 광 변위센서의 성능분석)

  • Kang, Hoon;Lee, Hunseok;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.639-646
    • /
    • 2016
  • In this study, the contactless measurement method with a optical displacement sensor(ODS, ADNS 9500) was proposed to overcome flaws in a rotary encoder based measurement under particular circumstances, such as a slippage and a case of little rotational inertia. The performance tests of the optical displacement sensor using data acquisition board and National Instruments's LabVIEW program were performed to accomplish accurate displacement measurements and the performance characteristics according to measurement direction, speed, acceleration, height and surface types were discovered through the repetitive tests. The experimental results indicate that, in order to get an accurate in-plane motion, the height(distance between the ODS and the target surface) has to be maintained at the range of 2.4 mm to 3.2 mm and the sensitivity(resolution) should be modified and applied to the formulae for displacement calculation, considering its measurement direction, speed and surface type.

The Kinematic Characteristics of Javelin in Korean Male Javelin Throwers Following Rank (한국 남자 창던지기 선수들의 순위별 창의 운동학적 특성)

  • Kim, Tae-Sam;Ryu, Ji-Seon;Park, Jae-Myoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.2
    • /
    • pp.99-108
    • /
    • 2013
  • The purpose of this study was to analyze the kinematic characteristics of javelin to compare the characteristics between world elite athletes and local male athletes. The subjects selected 9 athletes out of total 13 athletes recorded more than 65 m in the preliminary and main competition participated in the 93rd National Sports Festival held in 2012. Three-Dimensional motion analysis using a system of 4 video cameras(Sony HXR-MC2000) at a sampling frequency of 60 fields/s was performed for this study. The Kwon3D 3.1 was used to obtain the three dimensional coordinates about the top, grip, end of javelin. And the kinematic factors of javelin calculated using Matlab2009a program. The resultant speed of javelin that affects directly to the record of performance showed 26.08 m/s indicated lower speed of about 2-3 m/s than world elite athletes. The release point appeared to have been made at the high of $1.79{\pm}0.07$ m of 99.8% of the height of the athletes. In terms of release angle, it was indicated average $33.0{\pm}3.81^{\circ}$ lower release angle compared to the world elite athletes. The attitude angle(up & down tilt angle, X axis) related to javelin indicated average $38.5{\pm}4.96^{\circ}$, its related attack angle average $5.5{\pm}5.11^{\circ}$, and yaw angle(sideslip, side attack angle) average $15.7{\pm}8.48^{\circ}$.

Kinematic and Kinetic Analysis of Taekwondo Poomsae Side Kick according to Various Heights of the Target (태권도 품새 옆차기시 타겟 높이 변화에 따른 운동학적 분석)

  • Hong, Ah Reum;So, Jae Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.3
    • /
    • pp.129-135
    • /
    • 2019
  • Objective: The purpose of this study is to present the scientific and quantitative data by finding the common points and differences of the side-kick according to the height change through the difference of the side kick motion performance according to the three target height changes and the function of the lower limbs muscle in side kick motion of Taekwondo Poomsae. Method: For this, total 14 players were selected who were registered in Korea Taekwondo Association and skilled group 7 players who had a medal from national competition and 7 players who did not have Taekwondo experience from department of physics. 4 video cameras to the feature on side kick per target height, and the subjects' support foot was located on the ground reactor and the practice was conducted 3 times: waist, chest, and head as the target height. the basic materials were collected by using Kwon 3D XP program and the T-test was conducted to verify the statistic difference between groups (SPSS 24.0). At this time, the statistics significance level was set as .05 and the following conclusion was obtained. Results: The lower the proficiency and the higher the height, the more the joint coordination between the hip and the knee. Conclusion: Summary of the result shows a common point that the change of target's height makes the lower the proficiency and the higher the height, the more the joint coordination between the hip and the knee. Also, the higher the target's height became, the greater angular momentum of thighs, shanks, foot became in common.

Study on Effect of Exercise Performance using Non-face-to-face Fitness MR Platform Development (비대면 휘트니스 MR 플랫폼 개발을 활용한 운동 수행 효과에 관한 연구)

  • Kim, Jun-woo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.571-576
    • /
    • 2021
  • This study was carried out to overcome the problems of the existing fitness business and to build a fitness system that can meet the increased demand in the Corona situation. As a platform technology for non-face-to-face fitness edutainment service, it is a next-generation fitness exercise device that can use various body parts and synchronize network-type information. By synchronizing the exercise information of the fitness equipment, it was composed of learning contents through MR-based avatars. A quantified result was derived from examining the applicability of the customized evaluation system through momentum analysis with A.I analysis applying the LSTM-based algorithm according to the cumulative exercise effect of the user. It is a motion capture and 3D visualization fitness program for the application of systematic exercise techniques through academic experts, and it is judged that it will contribute to the improvement of the user's fitness knowledge and exercise ability.

A Stability Analysis of a Biped Walking Robot about Balancing Weight (이족 보행로봇의 균형추 형태에 따른 안정성 해석)

  • Noh Kyung-Kon;Kim Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.89-96
    • /
    • 2005
  • This paper is concerned with a balancing motion formulation and control of the ZMP (Zero Moment Point) for a biped-walking robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a walking robot which have a prismatic balancing weight is conditionally linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. For a stable gait, stabilization equations of a biped-walking robot are modeled as non-homogeneous second order differential equations for each balancing weight type, and a trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3dimensional graphic simulator is developed to get and calculate the desired ZMP and the actual ZMP. The operating program is developed for a real biped-walking robot IWRⅢ. Walking of 4 steps will be simulated and experimented with a real biped-walking robot. This balancing system will be applied to a biped humanoid robot, which consist legs and upper body, as a future work.