• Title/Summary/Keyword: 3D micro-structure

Search Result 226, Processing Time 0.033 seconds

Thermal Fatigue Behavior of 3D-Woven SiC/SiC Composite with Porous Matrix for Transpiration Cooling Passages

  • Hayashi, Toshimitsu;Wakayama, Shuichi
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.61-75
    • /
    • 2009
  • The effect of porous matrix on thermal fatigue behavior of 3D-orthogonally woven SiC/SiC composite was evaluated in comparison with that having relatively dense matrix. The porous matrix yields open air passages through its thickness which can be utilized for transpiration cooling. On the other hand, the latter matrix is so dense that the air passages are sealed. A quantity of the matrix was varied by changing the number of repetition cycles of the polymer impregnation pyrolysis (PIP). Strength degradation of composites under thermal cycling conditions was evaluated by the $1200^{\circ}C$/RT thermal cycles with a combination of burner heating and air cooling for 200 cycles. It was found that the SiC/SiC composite with the porous matrix revealed little degradation in strength during the thermal cycles, while the other sample showed a 25% decrease in strength. Finally it was demonstrated that the porous structure in 3D-SiC/SiC composite improved the thermal fatigue durability.

Modeling of sulfate ionic diffusion in porous cement based composites: effect of capillary size change

  • Gospodinov, Peter N.
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.157-166
    • /
    • 2007
  • The paper considers a theoretical model to study sulfate ion diffusion in saturated porous media - cement based mineral composites, accounting for simultaneous effects, such as filling micro-capillaries (pores) with ions and chemical products and liquid push out of them. Pore volume change and its effect on the distribution of ion concentration within the specimen are investigated. Relations for the distribution of the capillary relative radius and volume within the composite under consideration are found. The numerical algorithm used is further completed to consider capillary size change and the effects accompanying sulfate ion diffusion. Ion distribution within the cross section and volume of specimens fabricated from mineral composites is numerically studied, accounting for the change of material capillary size and volume. Characteristic cases of 2D and 3D diffusion are analyzed. The results found can be used to both assess the sulfate corrosion in saturated systems and predict changes occurring in the pore structure of the composite as a result of sulfate ion diffusion.

Oscillator Design and Fabrication using a Miniatured Hairpin Resonator

  • Kim, Jang-Gu;Han, Sok-Kyun;Park, Hyung-Ha
    • Journal of Navigation and Port Research
    • /
    • v.28 no.4
    • /
    • pp.293-297
    • /
    • 2004
  • In this papers, an S-band oscillator of the low phase noise property using a miniaturized micro-strip hairpin shaped ring resonator is presented The substrate has a dielectric constant $\epsilon_\gamma$=3.5, a thickness h=0.508 mm, and loss tangent $tan\delta$=0.002. A designed and fabricated oscillator shows low phase noise performance of 99. 71 dBc/Hz at 100 KHz offset frequency and of output power 19.584 dBm at center frequency 2.450 GHz. This circuit was fabricated with hybrid technique, but can be fully compatible with the MMIC due to its entirely planar structure.

Fabrication of polycrystalline 3C-SiC diode for harsh environment micro chemical sensors and their characteristics (극한 환경 마이크로 화학센서용 다결정 3C-SiC 다이오드 제작과 그 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.195-196
    • /
    • 2009
  • This paper describes the fabrication and characteristics of polycrystalline 3C-SiC thin film diodes for extreme environment applications, in which the this thin film was deposited onto oxidized Si wafers by APCVD using HMDS In this work, the optimized growth temperature and HMDS flow rate were $1,100^{\circ}C$ and 8sccm, respectively. A Schottky diode with a Au, Al/poly 3C-SiC/$SiO_2$/Si(n-type) structure was fabricated and its threshold voltage ($V_d$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_D$) values were measured as 0.84V, over 140V, 61nm, and $2.7{\times}10^{19}cm^2$, respectively. To produce good ohmic contact, Al/3C-SiC were annealed at 300, 400, and $500^{\circ}C$ for 30min under a vacuum of $5.0{\times}10^{-6}$Torr. The obtained p-n junction diode fabricated by poly 3C-SiC had similar characteristics to a single 3C-SiC p-n junction diode.

  • PDF

Relationship between trabecular strength and three-dimensional architecture in the pig mandible using microcomputed tomography (돼지 하악골의 micro-CT영상에서 추출한 3차원 골미세구조와 골강도 사이의 상관관계)

  • Huh Kyung-Hoe;Park Moo-Soon;Yi Won-Jin;Heo Min-Suk;Lee Sam-Sun;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.35 no.3
    • /
    • pp.167-173
    • /
    • 2005
  • Purpose : To investigate the relationship between three-dimensional (3D) bone imaging parameters and trabecular strength in the mandible. Materials and Methods : Bone specimens were obtained from the mandibles of five male pigs weighing around 110 kg each. Of those, 43 samples were selected for 3D analysis and measured by micro-computed tomography. The five morphometric parameters were trabecular thickness (Tb.Th), bone specific surface (BS/BV), percent bone volume (BV/TV), structure model index (SMI) and degree of anisotropy (DA). Through destructive mechanical testing, strength parameters were obtained. Results : BV/TV, SMI, BS/BV, and Tb.Th showed significant correlations with strength parameters. DA did not show any correlation with the other parameters. In multiple linear regression analysis, BV/TV alone explained $43\%$ of the variance in Young's modulus. By stepwise inclusion of SMI, the variance in the Young's modulus was better explained up to $52\%$. Conclusions : Predicting trabecular strength in the mandible through architectural analysis would be possible. Further study is needed to establish the tendency and variety of trabecular architecture and strength according to the locations within the mandible.

  • PDF

Robust concurrent topology optimization of multiscale structure under load position uncertainty

  • Cai, Jinhu;Wang, Chunjie
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.529-540
    • /
    • 2020
  • Concurrent topology optimization of macrostructure and microstructure has attracted significant interest due to its high structural performance. However, most of the existing works are carried out under deterministic conditions, the obtained design may be vulnerable or even cause catastrophic failure when the load position exists uncertainty. Therefore, it is necessary to take load position uncertainty into consideration in structural design. This paper presents a computational method for robust concurrent topology optimization with consideration of load position uncertainty. The weighted sum of the mean and standard deviation of the structural compliance is defined as the objective function with constraints are imposed to both macro- and micro-scale structure volume fractions. The Bivariate Dimension Reduction method and Gauss-type quadrature (BDRGQ) are used to quantify and propagate load uncertainty to calculate the objective function. The effective properties of microstructure are evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The bi-directional evolutionary structural optimization (BESO) method is used to obtain the black-and-white designs. Several 2D and 3D examples are presented to validate the effectiveness of the proposed robust concurrent topology optimization method.

A Study on the MDAS-DR Antenna for Shaping Flat-Topped Radiation Pattern (구형 빔 패턴 형성을 위한 MDAS-DR 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.323-333
    • /
    • 2007
  • In this paper, a new MDAS-DR antenna structure designed to efficiently shape a flat-topped radiation pattern is proposed. The antenna structure is composed of a stacked micro-strip patch exciter and a multi-layered disk array structure(MDAS) surrounded by a dielectric ring. The MDAS, which was supplied by a stacked microstrip patch exciter with radiating power, can form a flat-topped radiation pattern in a far field by a mutual interaction with the surrounding dielectric ring. Therefore, the design parameters of the dielectric ring and the MDAS structure are important design parameters for shaping a flat-topped radiation pattern. The proposed antenna used twelve multi-layered disk array elements and a Teflon material with a dielectric constant of 2.05. An antenna operated at 10 GHz$(9.6\sim10.4\;GHz)$ was designed in order to verify the effectiveness of the proposed antenna structure. The commercial simulator of CST Microwave $Studio^{TM}$, which was adapted to a 3-D antenna structure analysis, was used for the simulation. The antenna breadboard was also fabricated and its electrical performance was measured in an anechoic antenna chamber. The measured results of the antenna breadboard with a flat-topped radiation pattern were found to be in good agreement with the simulated one. The MDAS-DR antenna gain measured at 10 GHz was 11.18 dBi, and the MDAS-DR antenna was capable of shaping a good flat-topped radiation pattern with a beam-width of about $40^{\circ}$, at least within a fractional bandwidth of 8.0 %.

Microtube Light-Emitting Diode Arrays with Metal Cores

  • Tchoe, Youngbin;Lee, Chul-Ho;Park, Junbeom;Baek, Hyeonjun;Chung, Kunook;Jo, Janghyun;Kim, Miyoung;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.287.1-287.1
    • /
    • 2016
  • Three-dimensional (3-D) semiconductor nanoarchitectures, including nano- and micro- rods, pyramids, and disks, are emerging as one of the most promising elements for future optoelectronic devices. Since these 3-D semiconductor nanoarchitectures have many interesting unconventional properties, including the use of large light-emitting surface area and semipolar/nonpolar nano- or micro-facets, numerous studies reported on novel device applications of these 3-D nanoarchitectures. In particular, 3-D nanoarchitecture devices can have noticeably different current spreading characteristics compared with conventional thin film devices, due to their elaborate 3-D geometry. Utilizing this feature in a highly controlled manner, color-tunable light-emitting diodes (LEDs) were demonstrated by controlling the spatial distribution of current density over the multifaceted GaN LEDs. Meanwhile, for the fabrication of high brightness, single color emitting LEDs or laser diodes, uniform and high density of electrical current must be injected into the entire active layers of the nanoarchitecture devices. Here, we report on a new device structure to inject uniform and high density of electrical current through the 3-D semiconductor nanoarchitecture LEDs using metal core inside microtube LEDs. In this work, we report the fabrications and characteristics of metal-cored coaxial $GaN/In_xGa_{1-x}N$ microtube LEDs. For the fabrication of metal-cored microtube LEDs, $GaN/In_xGa_{1-x}N/ZnO$ coaxial microtube LED arrays grown on an n-GaN/c-Al2O3 substrate were lifted-off from the substrate by wet chemical etching of sacrificial ZnO microtubes and $SiO_2$ layer. The chemically lifted-off layer of LEDs were then stamped upside down on another supporting substrates. Subsequently, Ti/Au and indium tin oxide were deposited on the inner shells of microtubes, forming n-type electrodes of the metal-cored LEDs. The device characteristics were investigated measuring electroluminescence and current-voltage characteristic curves and analyzed by computational modeling of current spreading characteristics.

  • PDF

Fabrication of a Porous Copper Current Collector Using a Facile Chemical Etching to Alleviate Degradation of a Silicon-Dominant Li-ion Battery Anode

  • Choi, Hongsuk;Kim, Subin;Song, Hayong;Suh, Seokho;Kim, Hyeong-Jin;Eom, KwangSup
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.249-255
    • /
    • 2021
  • In this work, we proposed a facile method to fabricate the three-dimensional porous copper current collector (3D Cu CC) for a Si-dominant anode in a Li-ion battery (LiB). The 3D Cu CC was prepared by combining chemical etching and thermal reduction from a planar copper foil. It had a porous layer employing micro-sized Cu balls with a large surface area. In particular, it had strengthened attachment of Si-dominant active material on the CC compared to a planar 2D copper foil. Moreover, the increased contact area between a Si-dominant active material and the 3D Cu could minimize contact loss of active materials from a CC. As a result of a battery test, Si-dominant active materials on 3D Cu showed higher cyclic performance and rate-capability than those on a conventional planar copper foil. Specifically, the Si electrode employing 3D Cu exhibited an areal capacity of 0.9 mAh cm-2 at the 300th cycles (@ 1.0 mA cm-2), which was 5.6 times higher than that on the 2D copper foil (0.16 mAh cm-2).

Effect of Inherent Anatomy of Plant Fibers on the Morphology of Carbon Synthesized from Them and Their Hydrogen Absorption Capacity

  • Sharon, Madhuri;Sharon, Maheshwar
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.161-166
    • /
    • 2012
  • Carbon materials were synthesized by pyrolysis from fibers of Corn-straw (Zea mays), Rice-straw (Oryza sativa), Jute-straw (Corchorus capsularis) Bamboo (Bombax bambusa), Bagass (Saccharum officinarum), Cotton (Bombax malabaricum), and Coconut (Cocos nucifera); these materials were characterized by scanning electron microscope, X-ray diffraction (XRD), and Raman spectra. All carbon materials are micro sized with large pores or channel like morphology. The unique complex spongy, porous and channel like structure of Carbon shows a lot of similarity with the original anatomy of the plant fibers used as precursor. Waxy contents like tyloses and pits present on fiber tracheids that were seen in the inherent anatomy disappear after pyrolysis and only the carbon skeleton remained; XRD analysis shows that carbon shows the development of a (002) plane, with the exception of carbon obtained from bamboo, which shows a very crystalline character. Raman studies of all carbon materials showed the presence of G- and D-bands of almost equal intensities, suggesting the presence of graphitic carbon as well as a disordered graphitic structure. Carbon materials possessing lesser density, larger surface area, more graphitic with less of an $sp^3$ carbon contribution, and having pore sizes around $10{\mu}m$ favor hydrogen adsorption. Carbon materials synthesized from bagass meet these requirements most effectively, followed by cotton fiber, which was more effective than the carbon synthesized from the other plant fibers.