• Title/Summary/Keyword: 3D mesh data

Search Result 218, Processing Time 0.028 seconds

3-dimensional Mesh Model Coding Using Predictive Residual Vector Quantization (예측 잉여신호 벡터 양자화를 이용한 3차원 메시 모델 부호화)

  • 최진수;이명호;안치득
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.136-145
    • /
    • 1997
  • As a 3D mesh model consists of a lot of vertices and polygons and each vertex position is represented by three 32 bit floating-point numbers in a 3D coordinate, the amount of data needed for representing the model is very excessive. Thus, in order to store and/or transmit the 3D model efficiently, a 3D model compression is necessarily required. In this paper, a 3D model compression method using PRVQ (predictive residual vector quantization) is proposed. Its underlying idea is based on the characteristics such as high correlation between the neighboring vertex positions and the vectorial property inherent to a vertex position. Experimental results show that the proposed method obtains higher compression ratio than that of the existing methods and has the advantage of being capable of transmitting the vertex position data progressively.

  • PDF

Detailed-information Browsing Technology based on Level of Detail for 3D Cultural Asset Data (3D 문화재 데이터의 LOD 기반 상세정보 브라우징 기술)

  • Jung, Jung-Il;Cho, Jin-Soo;WhangBo, Tae-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.110-121
    • /
    • 2009
  • In this paper, we propose the new method that offer detailed-information through relax the system memory limitation about 3D model to user. That method based on making LOD(Level of Detail) model from huge 3D data of structure cultural assets. In our method as transformed AOSP algorithm, first of all it create the hierarchical structure space about 3D data, and create the LOD model by surface simplification. Then it extract the ROI(Region of Interest) of user in simplified LOD model, and then do rendering by original model and same surface detailed-information after process the local detailed in extracted region. To evaluate the proposed method, we have some experiment by using the precise 3D scan data of structure cultural assets. Our method can offer the detailed-information same as exist method, and moreover 45% reduced consumption of memory experimentally by forming mesh structure same as ROI of simplified LOD model. So we can check the huge structure cultural assets particularly in general computer environment.

A Development of Data Structure and Mesh Generation Algorithm for Global Ship Analysis Modeling System (선박의 전선해석 모델링 시스템을 위한 자료구조와 요소생성 알고리즘 개발)

  • Kim I.I.;Choi J.H.;Jo H.J.;Suh H.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.61-69
    • /
    • 2005
  • In the global ship structure and vibration analysis, the FE(finite element) analysis model is required in the early design stage before the 3D CAD model is defined. And the analysis model generation process is a time-consuming job and takes much more time than the engineering work itself. In particular, ship structure has too many associated structural members such as stringers, stiffness and girders etc. These structural members should be satisfied as the constraints in analysis modeling. Therefore it is necessary to support generation of analysis model with satisfying these constraints as an automatic manner. For the effective support of the global ship analysis modeling, a method to generate analysis model using initial design information within ship design process, that hull form offset data and compartment data, is developed. In order to easily handle initial design information and FE model information, flexible data structure is proposed. An automatic quadrilateral mesh generation algorithm using initial design information to satisfy the constraints imposed on the ship structure is also proposed. The proposed data structure and mesh generation algorithm are applied for the various type of vessels for the usability test. Through this test, we have verified the stability and usefulness of this system including mesh generation algorithm.

Compression of 3D Mesh Geometry and Vertex Attributes for Mobile Graphics

  • Lee, Jong-Seok;Choe, Sung-Yul;Lee, Seung-Yong
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.3
    • /
    • pp.207-224
    • /
    • 2010
  • This paper presents a compression scheme for mesh geometry, which is suitable for mobile graphics. The main focus is to enable real-time decoding of compressed vertex positions while providing reasonable compression ratios. Our scheme is based on local quantization of vertex positions with mesh partitioning. To prevent visual seams along the partitioning boundaries, we constrain the locally quantized cells of all mesh partitions to have the same size and aligned local axes. We propose a mesh partitioning algorithm to minimize the size of locally quantized cells, which relates to the distortion of a restored mesh. Vertex coordinates are stored in main memory and transmitted to graphics hardware for rendering in the quantized form, saving memory space and system bus bandwidth. Decoding operation is combined with model geometry transformation, and the only overhead to restore vertex positions is one matrix multiplication for each mesh partition. In our experiments, a 32-bit floating point vertex coordinate is quantized into an 8-bit integer, which is the smallest data size supported in a mobile graphics library. With this setting, the distortions of the restored meshes are comparable to 11-bit global quantization of vertex coordinates. We also apply the proposed approach to compression of vertex attributes, such as vertex normals and texture coordinates, and show that gains similar to vertex geometry can be obtained through local quantization with mesh partitioning.

Point-Based Simplification Using Moving-Least-Squrares (근사 함수를 이용한 Point-Based Simplification)

  • 조현철;배진석;김창헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1312-1314
    • /
    • 2004
  • This paper proposes a new simplification algorithm that simplifies reconstructed polygonal mesh from 3D point set considering an original point set. Previous method computes error using mesh information, but it makes to increase error of difference between an original and a simplified model by reason of implementation of simplification. Proposed method simplifies a reconstructed model using an original point data, we acquire a simplified model similar an original. We show several simplified results to demonstrate the usability of our methods.

  • PDF

Grid Discretization Study for the Efficient Aerodynamic Analysis of the Very Light Aircraft (VLA) Configuration

  • Sitio, Moses;Kim, Sangho;Lee, Jaewoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.122-132
    • /
    • 2013
  • In this research the development of unstructured grid discretization solution techniques is presented. The purpose is to describe such a conservative discretization scheme applied for experimental validation work. The objective of this paper is to better establish the effects of mesh generation techniques on velocity fields and particle deposition patterns to determine the optimal aerodynamic characteristics. In order to achieve the objective, the mesh surface discretization approaches used the VLA prototype manufacturing tolerance zone of the outer surface. There were 3 schemes for this discretization study implementation. They are solver validation, grid convergence study and surface tolerance study. A solver validation work was implemented for the simple 2D and 3D model to get the optimum solver for the VLA model. A grid convergence study was also conducted with a different growth factor and cell spacing, the amount of mesh can be controlled. With several amount of mesh we can get the converged amount of mesh compared to experimental data. The density around surface model can be calculated by controlling the number of element in every important and sensitive surface area of the model. The solver validation work result provided the optimum solver to employ in the VLA model analysis calculation. The convergence study approach result indicated that the aerodynamic trend characteristic was captured smooth enough compared with the experimental data. During the surface tolerance scheme, it could catch the aerodynamics data of the experiment data. The discretization studies made the validation work more efficient way to achieve the purpose of this paper.

Construction of Open-source Program Platform for Efficient Numerical Analysis and Its Case Study (효율적 수치해석을 위한 오픈소스 프로그램 기반 해석 플랫폼 구축 및 사례 연구)

  • Park, Chan-Hee;Kim, Taehyun;Park, Eui-Seob;Jung, Yong-Bok;Bang, Eun-Seok
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.509-518
    • /
    • 2020
  • This study constructed a new simulation platform, including mesh generation process, numerical simulation, and post-processing for results analysis based on exploration data to perform real-scale numerical analysis considering the actual geological structure efficiently. To build the simulation platform, we applied for open-source programs. The source code is open to be available for code modification according to the researcher's needs and compatibility with various numerical simulation programs. First, a three-dimensional model(3D) is acquired based on the exploration data obtained using a drone. Then, the domain's mesh density was adjusted to an interpretable level using Blender, the free and open-source 3D creation suite. The next step is to create a 3D numerical model by creating a tetrahedral volume mesh inside the domain using Gmsh, a finite element mesh generation program. To use the mesh information obtained through Gmsh in a numerical simulation program, a converting process to conform to the program's mesh creation protocol is required. We applied a Python code for the procedure. After we completed the stability analysis, we have created various visualization of the study using ParaView, another open-source visualization and data analysis program. We successfully performed a preliminary stability analysis on the full-scale Dokdo model based on drone-acquired data to confirm the usefulness of the proposed platform. The proposed simulation platform in this study can be of various analysis processes in future research.

The need and application examples of 3D Flow Analysis in the industry (산업현장에서의 3차원 성형해석의 필요성 및 적용예제)

  • Lee, Gil-Ho;Yamada, Takemitsu
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.217-220
    • /
    • 2004
  • 3D CAE becomes a key technology to complete a digital engineering system. '3D TIMON', developed by TORAY Industries, Inc., is the useful software to analyze whole injection molding process with solid elements and is capable of generating solid mesh models directly from 3D CAD data. In this paper, we introduce '3D TIMON' and the application examples in the each industries.

  • PDF

Topology Preserving Tetrahedral Decomposition Applied To Trilinear Interval Volume Tetrahedrization

  • Sohn, Bong-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.667-681
    • /
    • 2009
  • We describe a method to decompose a cube with trilinear interpolation into a collection of tetrahedra with linear interpolation, where the isosurface topology is preserved for all isovalues during decomposition. Visualization algorithms that require input scalar data to be defined on a tetrahedral grid can utilize our method to process 3D rectilinear data with topological correctness. As one of many possible examples, we apply the decomposition method to topologically accurate tetrahedral mesh extraction of an interval volume from trilinear volumetric imaging data. The topological correctness of the resulting mesh can be critical for accurate simulation and visualization.

Acceleration of 2D Image Based Flow Visualization using GPU (GPU를 이용한 2차원 영상 기반 유동 가시화 기법의 가속)

  • Lee, Joong-Youn
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.543-546
    • /
    • 2007
  • Flow visualization is one of visualization techniques and it means a visual expression of vector data using 2D or 3D graphics. It aims for human to easily find and understand a special feature of the vector data. The Image Based Flow Visualization (IBFV) is one of the fastest technique in the dense integration based flow visualization techniques. In this paper, IBFV is accelerated and implemented using commodity GPU. Especially, mesh advection is accelerated at the vertex program.

  • PDF