• Title/Summary/Keyword: 3D mapping

Search Result 780, Processing Time 0.035 seconds

Mapping 2D Midship Section into 3D Structural Models based on STEP AP218 (STEP AP218 방법에 따른 중앙단면 2차원 정보의 3차원 구조 모델로 매핑)

  • Ho-Jin Hwang;Soon-Hung Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.56-65
    • /
    • 2001
  • The structural model of midship section is within the scope of STEP AP218. It supports to represent the ship structure, but most of shipyards and classification societies exchange the information using 2D drawings at the present. To translate the 2D information into the ship structure model of STEP AP218, we analyze the 2D midship section information of KR-TRAS of Korean Register of shipping, and include the transverse members information with the 3D model. We also define the mapping table and the mapping relationships between two data structures. With this mapping table we develop the translator for the midship section, and visualize the translated ship structure model using a STEP viewer. The ship structure model can be used to exchange information between design departments, and through the lifecycle of design, analysis, and maintenance.

  • PDF

Construction of a artificial levee line in river zones using LiDAR Data (라이다 자료를 이용한 하천지역 인공 제방선 추출)

  • Choung, Yun-Jae;Park, Hyeon-Cheol;Jo, Myung-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.185-185
    • /
    • 2011
  • Mapping of artificial levee lines, one of major tasks in river zone mapping, is critical to prevention of river flood, protection of environments and eco systems in river zones. Thus, mapping of artificial levee lines is essential for management and development of river zones. Coastal mapping including river zone mapping has been historically carried out using surveying technologies. Photogrammetry, one of the surveying technologies, is recently used technology for national river zone mapping in Korea. Airborne laser scanning has been used in most advanced countries for coastal mapping due to its ability to penetrate shallow water and its high vertical accuracy. Due to these advantages, use of LiDAR data in coastal mapping is efficient for monitoring and predicting significant topographic change in river zones. This paper introduces a method for construction of a 3D artificial levee line using a set of LiDAR points that uses normal vectors. Multiple steps are involved in this method. First, a 2.5-dimensional Delaunay triangle mesh is generated based on three nearest-neighbor points in the LiDAR data. Second, a median filtering is applied to minimize noise. Third, edge selection algorithms are applied to extract break edges from a Delaunay triangle mesh using two normal vectors. In this research, two methods for edge selection algorithms using hypothesis testing are used to extract break edges. Fourth, intersection edges which are extracted using both methods at the same range are selected as the intersection edge group. Fifth, among intersection edge group, some linear feature edges which are not suitable to compose a levee line are removed as much as possible considering vertical distance, slope and connectivity of an edge. Sixth, with all line segments which are suitable to constitute a levee line, one river levee line segment is connected to another river levee line segment with the end points of both river levee line segments located nearest horizontally and vertically to each other. After linkage of all the river levee line segments, the initial river levee line is generated. Since the initial river levee line consists of the LiDAR points, the pattern of the initial river levee line is being zigzag along the river levee. Thus, for the last step, a algorithm for smoothing the initial river levee line is applied to fit the initial river levee line into the reference line, and the final 3D river levee line is constructed. After the algorithm is completed, the proposed algorithm is applied to construct the 3D river levee line in Zng-San levee nearby Ham-Ahn Bo in Nak-Dong river. Statistical results show that the constructed river levee line generated using a proposed method has high accuracy in comparison to the ground truth. This paper shows that use of LiDAR data for construction of the 3D river levee line for river zone mapping is useful and efficient; and, as a result, it can be replaced with ground surveying method for construction of the 3D river levee line.

  • PDF

3D Detection of Obstacle Distribution and Mapping for Walking Guide of the Blind (시각 장애인 보행안내를 위한 장애물 분포의 3차원 검출 및 맵핑)

  • Yoon, Myoung-Jong;Jeong, Gu-Young;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • In walking guide robot, a guide vehicle detects an obstacle distribution in the walking space using range sensors, and generates a 3D grid map to map the obstacle information and the tactile display. And the obstacle information is transferred to a blind pedestrian using tactile feedback. Based on the obstacle information a user plans a walking route and controls the guide vehicle. The algorithm for 3D detection of an obstacle distribution and the method of mapping the generated obstacle map and the tactile display device are proposed in this paper. The experiment for the 3D detection of an obstacle distribution using ultrasonic sensors is performed and estimated. The experimental system consisted of ultrasonic sensors and control system. In the experiment, the detection of fixed obstacles on the ground, the moving obstacle, and the detection of down-step are performed. The performance for the 3D detection of an obstacle distribution and space mapping is verified through the experiment.

Implementation of Selective Mapping Billboard for Production of Image-based 3D Virtual Reality (실사기반의 3차원 가상현실 제작을 위한 선택적 맵핑 방식의 빌보드 구현)

  • Ahn, Eun-Young;Kim, Jae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.601-608
    • /
    • 2010
  • This investigation proposes a new method to overcome disadvantages of panorama VR that is oriented toward spacial information and Object VR that is oriented toward object itself and consequently to make 3D virtual reality (VR) contents efficiently by using image based approach. 3D VR contents provide satisfactory qualities to users but 3D modeling is complex and elaborative and requires high cost. So, this paper aims at reducing tremendous efforts for making 3D VR by substituting 3D modeling with 'advanced Billboard'(we call it Smart Billboard). Smart Billboard has a mechanism for selecting an adequate mapping image that is observable at each user viewpoint and carry on texture mapping into the Billboard. And it is validated with the practical embodiments of a virtual museum in which the exhibitions are prepared by Smart Billboard.

Accuracy Analysis of Point Cloud Data Produced Via Mobile Mapping System LiDAR in Construction Site (건설현장 MMS 라이다 기반 점군 데이터의 정확도 분석)

  • Park, Jae-Woo;Yeom, Dong-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.397-406
    • /
    • 2022
  • Recently, research and development to revitalize smart construction are being actively carried out. Accordingly, 3D mapping technology that digitizes construction site is drawing attention. To create a 3D digital map for construction site a point cloud generation method based on LiDAR(Light detection and ranging) using MMS(Mobile mapping system) is mainly used. The purpose of this study is to analyze the accuracy of MMS LiDAR-based point cloud data. As a result, accuracy of MMS point cloud data was analyzed as dx = 0.048m, dy = 0.018m, dz = 0.045m on average. In future studies, accuracy comparison of point cloud data produced via UAV(Unmanned aerial vegicle) photogrammetry and MMS LiDAR should be studied.

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Kim, D.E.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • Journal of Information Display
    • /
    • v.3 no.4
    • /
    • pp.19-22
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three-stepping motors placed in a non-magnetic frame were utilized for the mapping. Prior to the mapping starts, the inner contour of DY was measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed into various output formats such as multi pole harmonics of magnetic fields. Field shape in one, two and three- dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and some analysis results.

An Object-based Database Mapping Technology for 3D Graphic Data (3차원 그래픽 데이터를 위한 객체단위 데이터베이스 매핑 기법)

  • Jo, Hee-Jeong;Kim, Yong-Hwan;Lee, Ki-Jun;Hwang, Soo-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.8
    • /
    • pp.950-962
    • /
    • 2006
  • Recently, there have been increased many 3 dimensional graphic applications in Internet. Thus, a growing number of methods have been proposed for retrieving 3-D graphic data using their 3D features such as color, texture, shape, and spacial relations. However, few researches focus on 3D graphic modeling and database storage techniques. In this paper, we introduce a system that can store 3D graphics data modeled by XML-based 3D graphics markup language, 3DGML, and support content-based retrievals on 3D data by using SQL. We also present a mapping technique of 3DGML to relational database. The mapping process includes the extraction of semantic information from 3DGML and translate it into relational format. Finally, we show examples of SQL queries which use the 3D information contained in a 3D scene such as objects, 3D features, descriptions and scene-object component hierarchy.

  • PDF

Paneling of Curved NURBS Surface through Marching Geodesic - Application on Compound Surface - (일방향 지오데식을 활용한 곡면 형상의 패널링 - 복합 곡면을 중심으로 -)

  • Hong, Ji-Hak;Sung, Woo-Jae
    • Journal of KIBIM
    • /
    • v.11 no.4
    • /
    • pp.42-52
    • /
    • 2021
  • Paneling building facades is one of the essential procedures in building construction. Traditionally, it has been an easy task of simply projecting paneling patterns drawn in drawing boards onto 3d building facades. However, as many organic or curved building shapes are designed and constructed in modern architectural practices, the traditional one-to-one projection is becoming obsolete for the building types of the kind. That is primarily because of the geometrical discrepancies between 2d drawing boards and 3d curved building surfaces. In addition, curved compound surfaces are often utilized to accommodate the complicated spatial programs, building codes, and zoning regulations or to achieve harmonious geometrical relationships with neighboring buildings in highly developed urban contexts. The use of the compound surface apparently makes the traditional paneling pattern projection more challenging. Various mapping technics have been introduced to deal with the inabilities of the projection methods for curved facades. The mapping methods translate geometries on a 2d surface into a 3d building façade at the same topological locations rather than relying on Euclidean or Affine projection. However, due to the intrinsic differences of the planar 2d and curved 3d surfaces, the mapping often comes with noticeable distortions of the paneling patterns. Thus, this paper proposes a practical method of drawing paneling patterns directly on a curved compound surface utilizing Geodesic, which is faithful to any curved surface, to minimize unnecessary distortions.

Mineral Potential Mapping of Gagok Mine Using 3D Geological Modeling (3차원 지질모델링을 이용한 가곡광산 광상 포텐셜 지도 작성)

  • Park, Gyesoon;Cho, Seong-Jun;Oh, Hyun-Joo;Lee, Chang-Won
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.412-421
    • /
    • 2014
  • In order to develop an effective mineral exploration technique, this study was carried out about the potential mapping of Gagok mine. The deposit model of Gagok mine is widely known. Based on the deposit model, we constructed mining indicator indices using related igneous rocks, faults, and carbonate rocks. By analyzing the spatial correlation between ore and indicator index structures, we decided the weighting values of indices according to the distance from the index structure. The 3D potential mapping was performed using 3D geological model and geological indices. The analyzed potential map verified that the locations and patterns of high potential regions of the results were well matched with those of the known ore bodies. Using the potential mapping results, we could effectively predict the location of a high potential area that has similar geological settings with ore.