• 제목/요약/키워드: 3D manufacturing

검색결과 1,977건 처리시간 0.034초

다중 도메인 비전 시스템 기반 제조 환경 안전 모니터링을 위한 동적 3D 작업자 자세 정합 기법 (Dynamic 3D Worker Pose Registration for Safety Monitoring in Manufacturing Environment based on Multi-domain Vision System)

  • 최지동;김민영;김병학
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.303-310
    • /
    • 2023
  • A single vision system limits the ability to accurately understand the spatial constraints and interactions between robots and dynamic workers caused by gantry robots and collaborative robots during production manufacturing. In this paper, we propose a 3D pose registration method for dynamic workers based on a multi-domain vision system for safety monitoring in manufacturing environments. This method uses OpenPose, a deep learning-based posture estimation model, to estimate the worker's dynamic two-dimensional posture in real-time and reconstruct it into three-dimensional coordinates. The 3D coordinates of the reconstructed multi-domain vision system were aligned using the ICP algorithm and then registered to a single 3D coordinate system. The proposed method showed effective performance in a manufacturing process environment with an average registration error of 0.0664 m and an average frame rate of 14.597 per second.

3D JIG 모델의 Kinematic 템플릿 생성 방법론 (Kinematic Template Generation Methodology for 3D JIG Models)

  • 고민석;곽종근;왕지남;박상철
    • 한국CDE학회논문집
    • /
    • 제15권3호
    • /
    • pp.212-221
    • /
    • 2010
  • Proposed in the paper is a methodology to generate kinematic template for 3D JIG models. Recently, according to increase of the rate of automatic facility in manufacturing system, the 3D manufacturing and verification research and development have been issued. So, unlike in the past, moving 3D facilities are very various like JIGs, turn table, AS/RS worked in the automated manufacturing industry. Because 3D mesh models are used in these kinds of 3D simulation, users have to define the kinematic information manually. This 3D mesh data doesn't have parametric information and design history of the 3D model unlike the design level data. So, it is lighter than 3D design level data and more efficient to render on the 3D virtual manufacturing environment. But, when user wants to find a common axis located between the links, the parameter information of the model has to reconstruct for defining kinematic construction. It takes a long time and very repetitive to define an axis and makes a joint using 3D mesh data and it is non-intuitive task for user. This paper proposed template model that provides kinematic information of the JIG. This model is kinds of a state diagram to describe a relation between links. So, this model can be used for a kinematic template to the JIG which has a same mechanism. The template model has to be registered in the template library to use in the future, after user made the model of the specific type of the 3D JIG model.

ART 수지의 DLP 3D Printing 가공 시 실험변수의 영향 (The Influence of Experiment Variables on DLP 3D Printing using ART Resin)

  • 신근식;권현규;강용구
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.101-108
    • /
    • 2017
  • Recently, the patent rights for 3D printing technology have expired, while 3D printers with RP (Rapid Prototyping or Additive Manufacturing) and 3D printing technologies are receiving attention. In particular, the development of 3D printers is rapid in Korea, thanks to the increasing sales and popularity of FDM (Fused Deposition Modeling or Fused Filament Fabrication) 3D printers. However, the quality and productivity of the FDM 3D Printer are not good, so customers prefer the DLP (Digital Light Processing) method to avoid these shortcomings. The DLP method has high quality and productivity. However, because of the stereolithography equipment, it has few studies compared to optimal values for elements then FDM 3D printing study. In this study, to find the optimal conditions for 3D printing with the DLP method, the aim is to obtain the optimal values (strength, final time, quality) by changing the light exposure time, layer thickness, and z-axis speed.

단속형 가변적층쾌속조형공정을 이용한 3차원 스캔데이터로부터 3차원 시작품의 쾌속 제작 (Rapid Manufacturing of 3D Prototype from 3D scan data using VLM-ST)

  • 이상호;안동규;김효찬;양동열;박두섭;채희창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.536-539
    • /
    • 2002
  • The reverse engineering (RE) technology can quickly generate 3D point cloud data of an object by capturing the surface of a model using a 3D scanner. In the rapid prototyping (RP) technology, prototypes are rapidly produced from 3D CAD models in a layer-by-layer additive basis. In this paper, a physical human head shape is duplicated using a new RP process, the Transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), after the point cloud data of a human head shape measured from 3D SNX scanner are converted to STL file. From the duplicated human head shape, it has been shown that the VLM-ST process in connection with the 3D scanner is a fast and efficient process in that shapes with free surface, such as the human head shape, can be duplicated with ease. Considering the measurement time and the shape duplication time, the use of 3D SNX scanner and the VLM-ST process is expected to reduce the lead-time fur the development of new products in comparison with the other existing RE-RP connected manufacturing systems.

  • PDF

A Study on Bi-metal 3D printing Technology Development based on Laser Technology

  • Kim, Chiyen
    • 한국산업융합학회 논문집
    • /
    • 제23권2_1호
    • /
    • pp.107-113
    • /
    • 2020
  • Additive manufacturing(AM) can create complex shapes directly in 3D CAD models with internal geometry compared to conventional subtraction manufacturing. AM technology has the advantage of adopting various materials as well as the reduction of material. However, the high cost of AM is still a significant barrier preventing the wider adoption of AM in industries. This paper analyzes the technical application cases for solving these entry barriers and proposes a bi-metal 3D printing technology as an anticipated application to overcome the difficulty. The paper investigates the complications for current 3D metal printing technology to conduct bi-metal 3D printing and addresses ongoing solution research based on laser technology.

Development of 3D CAM system for End mills manufacturing

  • Trung-Thanh Pham;Ko, Sung-Lim;Kim, Yong-Hyun
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.850-853
    • /
    • 2004
  • The development of 3D CAM system for the manufacturing of end mills becomes a key approach to save the time and reduce cost for end mills manufacturing. This paper presents the calculation and simulation of end mill tools CNC machining bases on 5-axes CNC grinding machine tool. In this study describes the process of generation and simulation of grinding point data between the tool and the grinding wheels through the machined time. Depend on input data of end mill geometry, wheels geometry, wheel setting, machine setting the end mill configuration and NC code for machining will be generated and visualized in 3 dimension before machining. The 3D visualizations of end mill manufacturing was generated by using OpenGL in C++. The development software was designed by using Microsoft Visual C++, which has many advantages for users, saving time and reducing manufacturing cost.

  • PDF

클러스터형 반도체 장비의 실시간 3차원 모니터링 및 시뮬레이션 (Real-time 3D Monitoring & Simulation of Cluster Type Semiconductor Manufacturing Equipments)

  • 윤택상;한영신;이칠기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(2)
    • /
    • pp.41-44
    • /
    • 2002
  • The Semiconductor Industrial are developed after 1940. It was called “Rice of Industrial”. It needs great effect in Electronics. It was developed highly in recent several years with semiconductor manufacturing equipments. Semiconductor manufacturing devices are developed “In-line” type in the first stage. But It was non-effective in modem many type process. Because this reason, Cluster type manufacturing equipments are proposed. Cluster have ability of many-type-process and effective-scheduling by circular type process chamber In this paper. we propose a real-time 3D monitoring and simulation of this semiconductor manufacturing equipments. By proposed monitoring method, we have capability real visual maintanance & virtual simulation. This effective visual 3D monitoring could apply another dangerous environment in entire industrial.

  • PDF

적층가공을 이용한 임시의치 제작 및 기존방식의 임시의치와의 비교 증례 (Fabrication of additive manufacturing interim denture and comparison with conventional interim denture: A case report)

  • 김현아;임현필;강현;양홍서;박상원;윤귀덕
    • 대한치과보철학회지
    • /
    • 제57권4호
    • /
    • pp.483-489
    • /
    • 2019
  • 디지털치의학의 발달과 함께 computer-aided design and computer-aided manufacturing (CAD/CAM)을 이용한 3D 제작산업이 최근 급격한 성장을 하고 있다. 디지털 방식을 이용한 의치 제작 또한 최근의 디지털치의학 기술의 발전으로 증가하는 추세에 있다. CAD/CAM 제작방법은 크게 두가지 타입으로 나눌 수 있다: 절삭가공, 적층가공, 밀링과 같은 절삭가공은 블록 형태의 재료를 깎아 제조하는 기술을 토대로 하며, 3D printing과 같은 적층가공은 재료를 적층 방식으로 쌓아 올려 제조하는 기술을 토대로 한다. 적층가공은 밀링이 어려운 복잡한 구조의 제작에 적용할 수 있다. 본 증례에서, 적층가공방법이 레진상 총의치 제작에 이용되었다. 디지털방식을 적용한 의치의 사용기간동안 기능적, 심미적으로 만족할 만한 결과를 보여주었다.

LCD와 UV-LED 를 사용한 고성능, 저비용의 3D Printer 개발 (Development of High-Performance, Low-Cost 3D Printer Using LCD and UV-LED)

  • 조광호;장현석;하영명;이석희
    • 한국정밀공학회지
    • /
    • 제32권10호
    • /
    • pp.917-923
    • /
    • 2015
  • 3D Printing has a great advantage for its capabilities in manufacturing complicated structures in a reasonable manufacturing time, and thus is widely used in various fields. Due to the high cost of the equipment and material, a fairly acceptable equipment, the Projection Stereolithography Apparatus (PSLA), has been developed, using the projection pattern approach for the purpose of quick manufacturing. We evaluated its surface quality, as compared with that of other systems. The result is the development of a high-performance, low-cost 3D Printer and its operating software, using LCD and UV LED. Working materials for an optimal manufacturing are suggested in the research, along with some suggestions of basic approaches for enhancing the accuracy and quality of the manufactured structures.

스테인리스강 316L 재질의 PBF 및 DED 방식 금속 3D프린팅 시편 인장 시험 결과 (Tensile Test Results for Metal 3D Printed Specimens of Stainless Steel 316L Manufactured by PBF and DED)

  • 장경남;양승한
    • 한국압력기기공학회 논문집
    • /
    • 제19권1호
    • /
    • pp.11-19
    • /
    • 2023
  • Additive manufacturing technology, called as 3D printing, is one of fourth industrial revolution technologies that can drive innovation in the manufacturing process, and thus should be applied to nuclear industry for various purposes according to the manufacturing trend change in the future. In this paper, we performed tensile tests of 3D printed stainless steel 316L as-built specimens manufactured by two types of technology; DED (Directed Energy Deposition) and PBF (Powder Bed Fusion). Their mechanical properties (tensile strength, yield strength, elongation and reduction of area) were compared. As a result of comparison, the mechanical properties of the PBF specimens were slightly better than those of DED specimens. In the same additive type of specimens, the tensile and yield strength of specimens in the X and Y direction were higher than those in the Z direction, but the elongation and ROA were lower.