• Title/Summary/Keyword: 3D integral imaging

Search Result 158, Processing Time 0.038 seconds

Computational Implementation of Asymmetric Integral Imaging by Use of Two Crossed Lenticular Sheets

  • Shin, Dong-Hak;Cho, Myung-Jin;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.289-293
    • /
    • 2005
  • We propose an asymmetric integral imaging method to adjust the resolution and depth of a three-dimensional image. Our method is obtained by use of two lenticular sheets with different pitches fabricated under the same F/#. The asymmetric integral imaging is the generalized version of integral imaging, including both conventional integral imaging and one-dimensional integral imaging. We present experimental results to test and verify the performance of our method computationally.

  • PDF

Interactive 3D Integral Imaging System using Single Camera (하나의 카메라를 이용한 인터렉티스 3D 집적 영상 시스템)

  • Shin, Dong-Hak;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.829-835
    • /
    • 2008
  • Recently, 3D integral imaging system, which is well known as an auto-stereoscopic 3D display method, has been gaining great attention amongst researchers. The integral imaging is a promising 3D display technology since it is able to deliver continuous viewing points, full parallax, and full color view to the observers in space. In this paper, we propose a novel interactive 3D integral imaging system using a single camera. The user interface is implemented by adding a camera in the conventional integral imaging system. To show the possibility of the proposed system, we implement the optical setup and present the preliminary results. To our best knowledge, this is the first time to study an interactive 3D integral imaging.

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

Analysis of 3D integral imaging systems under fixed resource constraints (제안된 리소스에서 3D 집적 영상 시스템의 분석 기법)

  • Shin, Donghak;Hong, Seok-Min;Lee, Byung-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.1012-1014
    • /
    • 2012
  • Integral imaging is considered as a next-generation 3D display which can display 3d imaging in space using lens array. The performance of integral imaging systems depends on several factors including display panel, lens array, imaging devices and so on. In this paper, we develop a unifying framework to evaluate the resolution of integral imaging systems under fixed resource constraints. The proposed framework enables one to optimize the system performance. To show the feasibility of the proposed method, we carry out Monte Carlo simulations based on this framework and present the results.

  • PDF

3D Image Display Method using Synthetic Aperture integral imaging (Synthetic aperture 집적 영상을 이용한 3D 영상 디스플레이 방법)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2037-2042
    • /
    • 2012
  • Synthetic aperture integral imaging is one of promising 3D imaging techniques to capture the high-resolution elemental images using multiple cameras. In this paper, we propose a method of displaying 3D images in space using the synthetic aperture integral imaging technique. Since the elemental images captured from SAII cannot be directly used to display 3D images in an integral imaging display system, we first extract the depth map from elemental images and then transform them to novel elemental images for 3D image display. The newly generated elemental images are displayed on a display panel to generate 3D images in space. To show the usefulness of the proposed method, we carry out the preliminary experiments using a 3D toy object and present the experimental results.

2D-3D convertible display system having a background of full-parallax integral images (완전시차 집적 영상 배경을 가지는 2D-3D 겸용 디스플레이 시스템)

  • Hong, Suk-Pyo;Shin, Dong-Hak;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.369-375
    • /
    • 2009
  • In this paper, we propose a 2D-3D convertible display system having a background of full-parallax integral images. The proposed system is composed of integral imaging system and conventional 2D flat display and is able to operate either 3D mode or 2D mode. In 3D mode, the 3D image is generated by combining the 2D main image with the background image based on integral imaging. In 2D mode, the integral imaging system plays a role as the back-light of 2D flat display and then 2D image is observed through 2D flat display. To show the usefulness of the proposed system, we carry out the preliminary experiments and present the successful experimental results.

Three-Dimensional Imaging and Display through Integral Photography

  • Navarro, Hector;Dorado, Adrian;Saavedra, Genaro;Corral, Manuel Martinez
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • Here, we present a review of the proposals and advances in the field of three-dimensional (3D) imaging acquisition and display made in the last century. The most popular techniques are based on the concept of stereoscopy. However, stereoscopy does not provide real 3D experience, and produces discomfort due to the conflict between convergence and accommodation. For this reason, we focus this paper on integral imaging, which is a technique that permits the codification of 3D information in an array of 2D images obtained from different perspectives. When this array of elemental images is placed in front of an array of microlenses, the perspectives are integrated producing 3D images with full parallax and free of the convergence-accommodation conflict. In the paper we describe the principles of this technique, together with some new applications of integral imaging.

Transformations and Their Analysis from a RGBD Image to Elemental Image Array for 3D Integral Imaging and Coding

  • Yoo, Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2273-2286
    • /
    • 2018
  • This paper describes transformations between elemental image arrays and a RGBD image for three-dimensional integral imaging and transmitting systems. Two transformations are introduced and analyzed in the proposed method. Normally, a RGBD image is utilized in efficient 3D data transmission although 3D imaging and display is restricted. Thus, a pixel-to-pixel mapping is required to obtain an elemental image array from a RGBD image. However, transformations and their analysis have little attention in computational integral imaging and transmission. Thus, in this paper, we introduce two different mapping methods that are called as the forward and backward mapping methods. Also, two mappings are analyzed and compared in terms of complexity and visual quality. In addition, a special condition, named as the hole-free condition in this paper, is proposed to understand the methods analytically. To verify our analysis, we carry out experiments for test images and the results indicate that the proposed methods and their analysis work in terms of the computational cost and visual quality.

Optimum parameters of 3D integral imaging system (3차원 집적 영상 시스템의 최적 파라미터)

  • Cho, Myungjin;Lee, Byonggook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.1019-1022
    • /
    • 2012
  • Integral imaging is a promising technology for 3D imaging and display. Many parameters affect the performance of 3D integral imaging systems. Enhanced system performance is acquired by optimization of these system parameters with respect to defined performance metrics. In this paper, we present an approach to optimize the performance of 3D integral imaging system in terms of performance metrics under fixed resource constraints. In this analysis, system parameters such as lens numerical aperture, pitch between image sensors, the number of image sensors, the pixel size, and the number of pixels are determined to optimize performance metrics. Wave optics is utilized to describe the imaging process.

  • PDF

Three-dimensional QR Code Using Integral Imaging (집적 영상을 활용한 3차원 QR code)

  • Kim, Youngjun;Cho, Ki-Ok;Han, Jaeseung;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2363-2369
    • /
    • 2016
  • In this paper, we propose three-dimensional (3D) quick-response (QR) code generation technique using passive 3D integral imaging and computational integral imaging reconstruction technique. In our proposed method, we divide 2D QR code into 4 planes with different reconstruction depths and then we generate 3D QR code using synthetic aperture integral imaging and computational reconstruction. In this 3D QR code generation process, we use integral imaging which is one of 3D imaging technologies. Finally, 3D QR code can be scanned by reconstructing and merging 3D QR codes at 4 different planes with computational reconstruction. Therefore, the security level for QR code scanning may be enhanced when QR code is scanned. To show that our proposed method can improve the security level for QR code scanning, in this paper, we carry out the optical experiments and computational reconstruction. In addition, we show that 3D QR code can be scanned when reconstruction depths are known.