• 제목/요약/키워드: 3D infill

검색결과 40건 처리시간 0.021초

3D Infill을 활용한 PC 모듈러공법과 기존공법과의 시공프로세스 비교 연구 (A Study on the Comparison of the Construction Process between the PC Modular Construction Method Using 3D Infill and the Existing Construction Method)

  • 정준수;임석호;양현정
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.87-88
    • /
    • 2023
  • In accordance with changes in the domestic construction environment, interest in off-site construction methods (factory-manufactured construction methods) including modular construction methods is rapidly increasing. Among various off-site (OSC) construction methods, the front runner is the steel-based box-type modular construction method. Compared to the existing wet construction method, the steel modular construction method is increasing in terms of securing economic feasibility by shortening the construction period and increasing the prefabrication rate. However, due to the recent rise in raw materials and a sharp rise in the exchange rate, the economic feasibility of the wet method is deteriorating compared to the wet method. Therefore, a hybrid between 9-Matrix-based OSC construction methods is considered as a solution, away from the steel-box type combination, and a comparative study of the construction process between each construction method is being conducted. It was analyzed that the PC modular construction method shortened the construction period by 9% compared to the existing steel modular construction method. On the other hand, when comparing the construction period of the Gayang-dong demonstration complex calculated assuming that all modules are applied, it is estimated that there will be a 12% reduction in construction period compared to the steel modular method and a whopping 43% compared to the RC method.

  • PDF

Analytical modeling of masonry infills with openings

  • Kakaletsis, D.
    • Structural Engineering and Mechanics
    • /
    • 제31권4호
    • /
    • pp.423-437
    • /
    • 2009
  • In order to perform a step-by-step force-displacement response analysis or dynamic time-history analysis of large buildings with masonry infilled R/C frames, a continuous force-deformation model based on an equivalent strut approach is proposed for masonry infill panels containing openings. The model, which is applicable for degrading elements, can be implemented to replicate a wide range of monotonic force-displacement behaviour, resulting from different design and geometry, by varying the control parameters of the model. The control parameters of the proposed continuous model are determined using experimental data. The experimental program includes fifteen 1/3-scale, single-story, single-bay reinforced concrete frame specimens subjected to lateral cyclic loading. The parameters investigated include the shape, the size, the location of the opening and the infill compressive strength. The actual properties of the infill and henceforth the characteristics needed for the diagonal strut model are based on the assessment of its lateral resistance by the subtraction of the response of the bare frame from the response of the infilled frame.

Seismic behavior of steel frames with lightweight-low strength industrialized infill walls

  • Zahrai, Seyed Mehdi;Khalili, Behnam Gholipour;Mousavi, Seyed Amin
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1273-1290
    • /
    • 2015
  • JK wall is a shear wall made of lightweight EPS mortar and reinforced with a 3-D galvanized steel mesh, called JK panel, and truss-like stiffeners, called JK stiffeners. Earlier studies have shown that low strength lightweight concrete has the potential to be used in structural elements. In this study, seismic contribution of the JK infill walls surrounded by steel frames is numerically investigated. Adopting a hybrid numerical model, behavior envelop of the wall is derived from the general purpose finite element software, Abaqus. Obtained backbone would be implemented in the professional analytical software, SAP2000, in which through calibrated hysteretic parameters, cyclic behavior of the JK infill can be simulated. Through comparison with earlier experimental results, it turned out that the proposed hybrid modeling can simulate monotonic and cyclic behavior of JK walls with good accuracy. JK infills have a panel-type configuration which their dominant failure mode would be ductile in flexure. Finally technical and economical advantages of the proposed JK infills are assessed for two representative multistory buildings. It is revealed that JK infills can reduce maximum inter-story drifts as well as residual drifts at the expense of minor increase in the developed base shear.

Printing Optimization of 3D Structure with Lard-like Texture Using a Beeswax-Based Oleogels

  • Hyeona Kang;Yourim Oh;Nam Keun Lee;Jin-Kyu Rhee
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권12호
    • /
    • pp.1573-1582
    • /
    • 2022
  • In this study, we investigated the optimal conditions for 3D structure printing of alternative fats that have the textural properties of lard using beeswax (BW)-based oleogel by a statistical analysis. Products printed with over 15% BW oleogel at 50% and 75% infill level (IL) showed high printing accuracy with the lowest dimensional printing deviation for the designed model. The hardness, cohesion, and adhesion of printed samples were influenced by BW concentration and infill level. For multi-response optimization, fixed target values (hardness, adhesiveness, and cohesiveness) were applied with lard printed at 75% IL. The preparation parameters obtained as a result of multiple reaction prediction were 58.9% IL and 16.0% BW, and printing with this oleogel achieved fixed target values similar to those of lard. In conclusion, our study shows that 3D printing based on the BW oleogel system produces complex internal structures that allow adjustment of the textural properties of the printed samples, and BW oleogels could potentially serve as an excellent replacement for fat.

Validation of the seismic response of an RC frame building with masonry infill walls - The case of the 2017 Mexico earthquake

  • Albornoz, Tania C.;Massone, Leonardo M.;Carrillo, Julian;Hernandez, Francisco;Alberto, Yolanda
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.229-251
    • /
    • 2022
  • In 2017, an intraplate earthquake of Mw 7.1 occurred 120 km from Mexico City (CDMX). Most collapsed structural buildings stroked by the earthquake were flat slab systems joined to reinforced concrete (RC) columns, unreinforced masonry, confined masonry, and dual systems. This article presents the simulated response of an actual six-story RC frame building with masonry infill walls that did not collapse during the 2017 earthquake. It has a structural system similar to that of many of the collapsed buildings and is located in a high seismic amplification zone. Five 3D numerical models were used in the study to model the seismic response of the building. The building dynamic properties were identified using an ambient vibration test (AVT), enabling validation of the building's finite element models. Several assumptions were made to calibrate the numerical model to the properties identified from the AVT, such as the presence of adjacent buildings, variations in masonry properties, soil-foundation-structure interaction, and the contribution of non-structural elements. The results showed that the infill masonry wall would act as a compression strut and crack along the transverse direction because the shear stresses in the original model (0.85 MPa) exceeded the shear strength (0.38 MPa). In compression, the strut presents lower stresses (3.42 MPa) well below its capacity (6.8 MPa). Although the non-structural elements were not considered to be part of the lateral resistant system, the results showed that these elements could contribute by resisting part of the base shear force, reaching a force of 82 kN.

Experimental investigation of infilled r/c frames with eccentric openings

  • Kakaletsis, D.;Karayannis, C.
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.231-250
    • /
    • 2007
  • The influence of masonry infills with eccentric openings on the seismic performance of reinforced concrete (r/c) frames that were designed in accordance with current code provisions are investigated. Eight 1/3-scale, single-story, single-bay frame specimens were tested under cyclic horizontal loading up to a drift level of 4%. In all examined cases the shear strength of columns was higher than the cracking shear strength of solid infill. The parameters investigated include the shape and the location of the opening. Assessment of the behavior of the frames is also attempted, based on the observed failure modes, strength, stiffness, ductility, energy dissipation capacity and degradation from cycling loading. Based on these results there can be deduced that masonry infills with eccentrically located openings has been proven to be beneficial to the seismic capacity of the bare r/c frames in terms of strength, stiffness, ductility and energy dissipation. The location of the opening must be as near to the edge of the infill as possible in order to provide an improvement in the performance of the infilled frame.

Racking shear resistance of steel frames with corner connected precast concrete infill panels

  • Hoenderkamp, J.C.D.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1403-1419
    • /
    • 2015
  • When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on the quality, quantity and location of the discrete interface connections. This paper presents preliminary experimental and finite element results of an investigation into the composite behaviour of a square steel frame with a precast concrete infill panel subject to lateral loading. The panel is connected at the corners to the ends of the top and bottom beams. The Frame-to-Panel-Connection, FPC4 between steel beam and concrete panel consists of two parts. A T-section with five achor bars welded to the top of the flange is cast in at the panel corner at a forty five degree angle. The triangularly shaped web of the T-section is reinforced against local buckling with a stiffener plate. The second part consists of a triangular gusset plate which is welded to the beam flange. Two bolts acting in shear connect the gusset plate to the web of the T-section. This way the connection can act in tension or compression. Experimental pull-out tests on individual connections allowed their load deflection characteristics to be established. A full scale experiment was performed on a one-storey one-bay 3 by 3 m infilled frame structure which was horizontally loaded at the top. With the characteristics of the frame-to-panel connections obtained from the experiments on individual connections, finite element analyses were performed on the infilled frame structures taking geometric and material non-linear behaviour of the structural components into account. The finite element model yields reasonably accurate results. This allows the model to be used for further parametric studies.

Experimental characterization of timber framed masonry walls cyclic behaviour

  • Goncalves, Ana Maria;Ferreira, Joao Gomes;Guerreiro, Luis;Branco, Fernando
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.189-204
    • /
    • 2015
  • After the large destruction of Lisbon due to the 1755 earthquake, the city had to be almost completely rebuilt. In this context, an innovative structural solution was implemented in new buildings, comprising internal timber framed walls which, together with the floors timber elements, constituted a 3-D framing system, known as "cage", providing resistance and deformation capacity for seismic loading. The internal timber framed masonry walls, in elevated floors, are constituted by a timber frame with vertical and horizontal elements, braced with diagonal elements, known as Saint Andrew's crosses, with masonry infill. This paper describes an experimental campaign to assess the in-plane cyclic behaviour of those so called "frontal" walls. A total series of 4 tests were conducted in 4 real size walls. Two models consist of the simple timber frames without masonry infill, and the other two specimens have identical timber frames but present masonry infill. Experimental characterization of the in-plane behaviour was carried out by static cyclic shear testing with controlled displacements. The loading protocol used was the CUREE for ordinary ground motions. The hysteretic behaviour main parameters of such walls subjected to cyclic loading were computed namely the initial stiffness, ductility and energy dissipation capacity.

Structural health monitoring and resilient assessment by novel intelligent models

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Structural Monitoring and Maintenance
    • /
    • 제10권4호
    • /
    • pp.339-360
    • /
    • 2023
  • In this paper, to assess the performance of a multi-span simply supported RC bridge, the dynamic characteristics of the bridge were measured and determined by structural health monitoring and resilient assessment via operational modal analysis as well as FE modeling. Supporting finite element (FE) models were created and analyzed according to the design drawings. This study used 2D plane monitoring of locations of hole in the infill wall and used 3D health monitoring and resilient assessment. From the results of 3Dsymmetric frame, if the frame is unsymmetrical, the used model can lead to the reduction in the internal forces. The recommendations from this study is from some discrepancies observed between 2D and 3D models, if possible 3D model should be used in analyzing the real frames.

여군 전투복 내 관절 부위 보호 패드 개발을 위한 설계 변인 조합에 따른 물성 평가 (Evaluation of Physical Properties of Material Combination for Fabricating Protection Pads for Women's Army Combat Uniforms )

  • 이옥경;이희란;김소영;이예진
    • 한국의류학회지
    • /
    • 제47권2호
    • /
    • pp.311-322
    • /
    • 2023
  • In this study, the properties of various material combinations were evaluated and an ideal material for fabricating protection pads for women's army combat uniforms was determined. Eight specimens were used for the evaluation: two types of materials, namely thermoplastic polyurethane for 3D printing, T and ethylene-vinyl acetate, E; two infill densities, namely 10%, 10 and 30%, 30; two types of pad designs, i.e., without holes, A and with holes, B; 2×2×2=8 and control E. The tensile strength, flexural strength, impact absorption, and weight of these specimens were evaluated. Results revealed that E was the most flexible material; however, its tensile strength and impact absorption were very low. Protection pads made from T (T-10A, T-10B, T-30A, and T-30B) had excellent tensile strength and impact absorption; however, they had low performance in ease of movement. Alternatively, protection pad with holes and an infill density of 30% produced using a combination of T and E had a high initial tensile modulus and exhibited excellent impact absorption. Moreover, it was flexible and light, which satisfies the standards and conditions required by protection pads. However, if T-E-10A and T-E-30B exhibited low impact absorption, as required, they can be regarded as appropriate materials for protection pads.