• Title/Summary/Keyword: 3D imaging technique

Search Result 264, Processing Time 0.029 seconds

Interactive system using 3D integral imaging technique (3D 집적 영상을 이용한 인터렉티브 시스템)

  • Shin, Dong-Hak;Kim, Eun-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.503-506
    • /
    • 2008
  • The integral imaging is a promising 3D display technology since it is able to deliver continuous viewing points, full parallax, and full color view to the observers in space. In this paper, we propose a novel interactive 3D integral imaging system using a single camera. The user interface is implemented by adding a camera in the conventional integral imaging system. To show the possibility of the proposed system, we implement the optical setup and present the preliminary results

  • PDF

Subsurface Imaging Technology For Damage Detection of Concrete Structures Using Microwave Antenna Array (안테나배열을 이용한 콘크리트부재 내부의 비파괴시험과 영상화방법 개발)

  • Kim, Yoo-Jin;Choi, Ko-Il;Jang, Il-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.1-8
    • /
    • 2005
  • Microwave tomographic imaging technology using a bi-focusing operator has been developed in order to detect the internal voids/objects inside concrete structures. The imaging system consists of several cylindrical or planar array antennas for transmitting and receiving signals, and a numerical focusing operator is applied to the external signals both in transmitting and in receiving fields. In this study, the authors developed 3-dimensional (3D) electromagnetic (EM) imaging technology to detect such damage and to identify exact location of steel rebars or dowel. The authors have developed sub-surface two-dimensional (2D) imaging technique using tomographic antenna array in previous works. In this study, extending the earlier analytical and experimental works on 2D image reconstruction, a 3D microwave imaging system using tomographic antenna way was developed, and multi-frequency technique was applied to improve quality of the reconstructed image and to reduce background noises. Numerical simulation demonstrated that a sub-surface image can be successfully reconstructed by using the proposed tomographic imaging technology. For the experimental verification, a prototype antenna array was fabricated and tested on a concrete specimen.

Current status of integral imaging after 100 years of history

  • Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1127-1130
    • /
    • 2008
  • Integral imaging is a three-dimensional display technique which has 100 years of history. The method is characterized by offering full parallax, almost-continuous viewpoints and easiness of moving picture display. In this paper, the history of the method is briefly explained and overview of its current status is provided.

  • PDF

Terahertz Nondestructive Time-of-flight Imaging with a Large Depth Range

  • Kim, Hwan Sik;Kim, Jangsun;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.619-626
    • /
    • 2022
  • In this study, we develop a three-dimensional (3D) terahertz time-of-flight (THz-TOF) imaging technique with a large depth range, based on asynchronous optical sampling (ASOPS) methods. THz-TOF imaging with the ASOPS technique enables rapid scanning with a time-delay span of 10 ns. This means that a depth range of 1.5 m is possible in principle, whereas in practice it is limited by the focus depth determined by the optical geometry, such as the focal length of the scan lens. We characterize the spatial resolution of objects at different vertical positions with a focal length of 5 cm. The lateral resolution varies from 0.8-1.8 mm within the vertical range of 50 mm. We obtain THz-TOF images for samples with multiple reflection layers; the horizontal and vertical locations of the objects are successfully determined from the 2D cross-sectional images, or from reconstructed 3D images. For instance, we can identify metallic objects embedded in insulating enclosures having a vertical depth range greater than 30 mm. For feasible practical use, we employ the proposed technique to locate a metallic object within a thick chocolate bar, which is not accessible via conventional transmission geometry.

Block-matching and 3D filtering algorithm in X-ray image with photon counting detector using the improved K-edge subtraction method

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2057-2062
    • /
    • 2024
  • Among photon counting detector (PCD)-based technologies, the K-edge subtraction (KES) method has a very high material decomposition efficiency. Yet, since the increase in noise in the X-ray image to which the KES method is applied is inevitable, research on image quality improvement is essential. Here, we modeled a block-matching and 3D filtering (BM3D) algorithm and applied it to PCD-based X-ray images with the improved KES (IKES) method. For PCD modeling, Monte Carlo simulation was used, and a phantom composed of iodine substances with different concentrations was designed. The IKES method was modeled by adding a log term to KES, and the X-ray image used for subtraction was obtained by applying the 3.0 keV range based on the K-edge region of iodine. As a result, the IKES image using the BM3D algorithm showed the lowest normalized noise power spectrum value. In addition, we confirmed that the contrast-to-noise ratio and no-reference-based evaluation results when the BM3D algorithm was applied to the IKES image were improved by 29.36 % and 20.56 %, respectively, compared to the noisy image. In conclusion, we demonstrated that the IKES imaging technique using a PCD-based detector and the BM3D algorithm fusion technique were very efficient for X-ray imaging.

Real 3D Property Integral Imaging NFT Using Optical Encryption

  • Lee, Jaehoon;Cho, Myungjin;Lee, Min-Chul
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.565-575
    • /
    • 2022
  • In this paper, we propose a non-fungible token (NFT) transaction method that can commercialize the real 3D property and make property sharing possible using the 3D reconstruction technique. In addition, our proposed method enhances the security of NFT copyright and metadata by using optical encryption. In general, a conventional NFT is used for 2D image proprietorial rights. To expand the scope of the use of tokens, many cryptocurrency industries are currently trying to apply tokens to real three-dimensional (3D) property. However, many token markets have an art copyright problem. Many tokens have been minted without considering copyrights. Therefore, tokenizing real property can cause significant social issues. In addition, there are not enough methods to mint 3D real property for NFT commercialization and sharing property tokens. Therefore, we propose a new token management technique to solve these problems using integral imaging and double random phase encryption. To show our system, we conduct a private NFT market using a test blockchain network that can demonstrate the whole NFT transaction process.

Real-World Pointing Region Estimation Using 3D Geometry Information (3차원 기하학 정보를 이용한 실세계 지시 영역 추정)

  • Han, Yun-Sang;Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.353-354
    • /
    • 2007
  • This paper proposes the method which estimates the pointing region at the real world. This paper uses the technique to easily calibrate a camera of Z. Zhang. First, we calculate the projection matrix of each camera by the technique. Next, we estimate the location of the shoulder and the fingertip. Then we compute the pointing region in 3D real world by using projection matrix of each camera. Experiment result showed that the error between estimated point and the plane center point is less than 5cm.

  • PDF

An Investigation into Three Dimensional Mutable 'Living' Textile Materials and Environments (2) (3D 가상 이미지의 텍스타일 소재로의 적용을 통한 삼차원 변형가능한 'Living Textil'과 환경변화에 관한 연구 (2))

  • Kim, Ki-Hoon;Suh, Ji-Sung
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.2
    • /
    • pp.316-323
    • /
    • 2011
  • This research aim concerns questioning how we can generate environments suggestive of nature fused with built environments through textiles. Through literature reviews and experiments with available the 3D imaging techniques of Holography, Lenticular and other new technologies. We also have researched towards finding the most effective method for 3D imaging techniques for textile applications. The advantage of the combining technique is to create the possibility of seeing a number of different floating 3D illusory images, depending on the viewing angle. This objective is to produce intriguing textile patterns and images in which the objects and colours change as viewpoints change. Experimental work was carried out in collaboration with professional textile researchers, scientists, artists and designers conducting research in this field.

Down-Scaled 3D Object for Telediagnostic Imaging Support System

  • Shin, Hang-Sik;Yoon, Sung-Won;Kim, Jae-Young;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.185-191
    • /
    • 2005
  • In this paper, we proposed a downscaled 3D object technique using medical images for telediagnostic use. The proposed system consisted of downscaling/thresholding processes for building a downscaled 3D object and a process for obtaining 2D images at specific angles for diagnosis support. We used 80 slices of Digital Imaging and Communication in Medicine(DICOM) CT images as sample images and the platform-independent Java language for the experiment. We confirmed that the total image set size and transmission time of the original DICOM image set using a down-scaled 3D object decreased approximately $99\%\;and\;98.41\%,$ respectively. With additional studies, the proposed technique obtained from these results will become useful in supporting diagnosis for home and hospital care.

The Spray Characterization Using Planar Imaging Technique (평면 이미지 기법을 이용한 분무 특성 해석)

  • Lee, Kyung-Jin;Jung, Ki-Hoon;Yoon, Young-Bin;Jeong, Kyung-Seok;Jeung, In-Seuck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.93-101
    • /
    • 2000
  • The characteristics of spray nozzle have been quantified with the measurement of fluorescence and Mie scattering images. To correct the attenuation of the incident light sheet, a sequential double-pass light sheet system and the geometrical averaging of two images was implemented. Quantitative mass flux distribution of spray was obtained from fluorescence image. 3-D image is reconstructed using 2-D radial images. Sauter mean diameter (SMD) distribution was determined using the ratio of fluorescence signal intensity and Mie scattering signal intensity and the values were quantified with PDP A data. The measurement of mass flux and SMD using planar imaging technique agee with PDP A data fairly well in the low density region. However, in dense region, there are significant errors caused by secondary scattering. It was found that the planar imaging technique provides many advantages over the point measurement technique, such as PDP A, and can be implemented for quantitative measurement, especially in low density region.