• Title/Summary/Keyword: 3D imaging

Search Result 1,448, Processing Time 0.032 seconds

3D Integral Imaging Display using Axially Recorded Multiple Images

  • Cho, Myungjin;Shin, Donghak
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.410-414
    • /
    • 2013
  • In this paper, we propose a 3D display method combining a pickup process using axially recorded multiple images and an integral imaging display process. First, we extract the color and depth information of 3D objects for displaying 3D images from axially recorded multiple 2D images. Next, using the extracted depth map and color images, elemental images are computationally synthesized based on a ray mapping model between 3D space and an elemental image plane. Finally, we display 3D images optically by an integral imaging system with a lenslet array. To show the usefulness of the proposed system, we carry out optical experiments for 3D objects and present the experimental results.

Design and Implementation of a Real-time Region Pointing System using Arm-Pointing Gesture Interface in a 3D Environment

  • Han, Yun-Sang;Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.290-293
    • /
    • 2009
  • In this paper, we propose a method to estimate pointing region in real-world from images of cameras. In general, arm-pointing gesture encodes a direction which extends from user's fingertip to target point. In the proposed work, we assume that the pointing ray can be approximated to a straight line which passes through user's face and fingertip. Therefore, the proposed method extracts two end points for the estimation of pointing direction; one from the user's face and another from the user's fingertip region. Then, the pointing direction and its target region are estimated based on the 2D-3D projective mapping between camera images and real-world scene. In order to demonstrate an application of the proposed method, we constructed an ICGS (interactive cinema guiding system) which employs two CCD cameras and a monitor. The accuracy and robustness of the proposed method are also verified on the experimental results of several real video sequences.

  • PDF

2D Sparse Array Transducer Optimization for 3D Ultrasound Imaging

  • Choi, Jae Hoon;Park, Kwan Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.441-446
    • /
    • 2014
  • A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

An Investigation into Three Dimensional Mutable 'Living' Textile Materials and Environments (2) (3D 가상 이미지의 텍스타일 소재로의 적용을 통한 삼차원 변형가능한 'Living Textil'과 환경변화에 관한 연구 (2))

  • Kim, Ki-Hoon;Suh, Ji-Sung
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.2
    • /
    • pp.316-323
    • /
    • 2011
  • This research aim concerns questioning how we can generate environments suggestive of nature fused with built environments through textiles. Through literature reviews and experiments with available the 3D imaging techniques of Holography, Lenticular and other new technologies. We also have researched towards finding the most effective method for 3D imaging techniques for textile applications. The advantage of the combining technique is to create the possibility of seeing a number of different floating 3D illusory images, depending on the viewing angle. This objective is to produce intriguing textile patterns and images in which the objects and colours change as viewpoints change. Experimental work was carried out in collaboration with professional textile researchers, scientists, artists and designers conducting research in this field.

Curved Projection Integral Imaging Using an Additional Large-Aperture Convex Lens for Viewing Angle Improvement

  • Hyun, Joo-Bong;Hwang, Dong-Choon;Shin, Dong-Hak;Lee, Byung-Gook;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.105-110
    • /
    • 2009
  • In this paper, we propose a curved projection integral imaging system to improve the horizontal and vertical viewing angles. The proposed system can be easily implemented by additional use of a large-aperture convex lens in conventional projection integral imaging. To obtain the simultaneous display of 3D images through real and virtual image fields, we propose a computer-generated pickup method based on ray optics and elemental images, which are synthesized for the proposed system. To show the feasibility of the proposed system, preliminary experiments are carried out. Experimental results indicate that our system improves the viewing angle and displays 3D images simultaneously in real and virtual image fields.

  • PDF

Imaging of Fractures and Tunnel by 3-D ERT (전기비저항 토모그래피에 의한 파쇄대 및 터널의 3차원 영상화)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.302-309
    • /
    • 2008
  • ERT imaging, especially 3-D method, is a very powerful means to obtain a very high resolution image of the subsurface for geotechnical or hydrogeological problems. In this paper, we introduce two examples of successful case histories, where the imaging targets were three-dimensional. First example is the case of 3-D fracture imaging for hydrogeologic application. In this example, the borehole deviation was a critical problem in the ERT imaging and we could obtain real 3-D attitude of fracture system by including the borehole deviation in the inversion. In the second case, we did field experiment to image the empty tunnel with the size of $2m{\times}2m$ and the target was very clearly imaged in 3-D space. In these examples, we could show that 3-D ERT imaging is a very powerful tool for the 3-D subsurface imaging and the method can provide enhanced imaging capabilities especially for the 3-D targets such as fractures and cavities or tunnel.

Early Diagnosis of Aseptic Meningitis in Ramsay Hunt Syndrome on 10-Minute Delayed CE 3D FLAIR Image: a Case Report

  • Kang, Mi Hyun;Kim, Da Mi;Lee, In Ho;Song, Chang June
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.197-200
    • /
    • 2021
  • Ramsay Hunt syndrome (RHS) is a disease caused by varicella-zoster virus (VZV) infection that can be diagnosed through clinical symptoms with or without imaging evaluations. The typical features of RHS on imaging evaluation include signal changes and enhancement in the internal auditory canal (IAC) nerves, and the labyrinthine segment of cranial nerve VII (CN VII) and cranial nerve VIII (CN VIII). In some patients, inner ear structure (cochlear and vestibular apparatus) is involved in RHS. Neurologic complications, such as encephalitis and meningitis, are rare in RHS, but are known to occur. Therefore, magnetic resonance imaging (MRI) is necessary to detect both abnormal signal intensity in the IAC, CN VII, CN VIII, inner and ear structure, and CNS complications. We report an RHS patient with CN VII, VIII, and leptomeningeal enhancement within the cerebellar folia on 10-min delayed, contrast-enhanced (CE), three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) imaging.

Subsurface Imaging Technology For Damage Detection of Concrete Structures Using Microwave Antenna Array (안테나배열을 이용한 콘크리트부재 내부의 비파괴시험과 영상화방법 개발)

  • Kim, Yoo-Jin;Choi, Ko-Il;Jang, Il-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.1-8
    • /
    • 2005
  • Microwave tomographic imaging technology using a bi-focusing operator has been developed in order to detect the internal voids/objects inside concrete structures. The imaging system consists of several cylindrical or planar array antennas for transmitting and receiving signals, and a numerical focusing operator is applied to the external signals both in transmitting and in receiving fields. In this study, the authors developed 3-dimensional (3D) electromagnetic (EM) imaging technology to detect such damage and to identify exact location of steel rebars or dowel. The authors have developed sub-surface two-dimensional (2D) imaging technique using tomographic antenna array in previous works. In this study, extending the earlier analytical and experimental works on 2D image reconstruction, a 3D microwave imaging system using tomographic antenna way was developed, and multi-frequency technique was applied to improve quality of the reconstructed image and to reduce background noises. Numerical simulation demonstrated that a sub-surface image can be successfully reconstructed by using the proposed tomographic imaging technology. For the experimental verification, a prototype antenna array was fabricated and tested on a concrete specimen.

Compression of Elemental Images Using Block Division in 3D Integral Imaging (3D 집적 영상에서 영역 분할을 이용한 요소 영상의 압축 기법)

  • Kang, Ho-Hyun;Shin, Dong-Hak;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.297-303
    • /
    • 2009
  • Integral imaging is a well-known 3D image recording and display technique. The huge size of integral imaging data requires a compression scheme to store and transmit 3D scenes. In the conventional compression scheme, the data amount of elemental images depends on the various recording condition such as the positional location of a 3D object, the illumination and specification of the lenslet array even if an identical pickup system is used. In this paper, to reduce the dependence of the image characteristics of elemental images on the pickup conditions, a compression scheme using block division on the elemental image of integral imaging is proposed. The proposed scheme provides an improved compression ratio by considering the local similarity of elemental images picked up from three-dimensional objects according to a positional location. To test the proposed scheme, various elemental images are picked up and a compression process is then carried out u sing a standard MPEG-4. Based on compression ratio results, the proposed compression scheme is improved by approximately 9% compared with the conventional compression method.

Assessment of Posterior Globe Flattening: Two-Dimensional versus Three-Dimensional T2-Weighted Imaging

  • Ann, Jun Hyung;Kim, Eung Yeop
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.178-185
    • /
    • 2015
  • Purpose: To compare the frequency of posterior globe flattening between two-dimensional T2-weighted imaging (2D T2WI) and three-dimensional (3D T2WI). Materials and Methods: Sixty-nine patients (31 female; mean age, 44.4 years) who had undergone both 5-mm axial T2WI and sagittal 3D 1-mm isovoxel T2WI of the whole brain for evaluation of various diseases (headache [n = 30], large hemorrhage [n = 19], large tumor or leptomeningeal tumor spread [n = 15], large infarct [n = 3], and bacterial meningitis [n = 2]) were used in this study. Two radiologists independently reviewed both sets of images at separate sessions. Axial T2WI and multi-planar imaging of 3D T2WI were visually assessed for the presence of globe flattening. The optic nerve sheath diameter (ONSD) was measured at a location 4 mm posterior to each globe on oblique coronal imaging reformatted from 3D T2WI. Results: There were significantly more globes showing posterior flattening on 3D T2WI (105/138 [76.1%]) than on 2D T2WI (27/138 [19.6%], P = 0.001). Inter-observer agreement was excellent for both 2D T2WI and 3D T2WI (Cohen's kappa = 0.928 and 0.962, respectively). Intra-class correlation coefficient for the ONSD was almost perfect (Cohen's kappa = 0.839). The globes with posterior flattening had significantly larger ONSD than those without on both 2D and 3D T2WI (P < 0.001; $6.14mm{\pm}0.44$ vs. $5.74mm{\pm}0.44$ on 2D T2WI; $5.90mm{\pm}0.47$ vs. $5.56mm{\pm}0.34$ on 3D T2WI). Optic nerve protrusion was significantly more frequent on reformatted 1-mm 3D T2WI than on 5-mm 2D T2WI (8 out of 138 globes on 3D T2WI versus one on 2D T2WI; P = 0.018). Conclusion: Posterior globe flattening is more frequently observed on 3D T2WI than on 2D T2WI in patients suspected of having increased intracranial pressure. The globes with posterior flattening have significantly larger ONSD than those without.