• Title/Summary/Keyword: 3D images

Search Result 3,509, Processing Time 0.045 seconds

The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography

  • Kang, Se-Ryong;Bok, Sung-Chul;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Huh, Kyung-Hoe;Kim, Tae-Il;Yi, Won-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.2
    • /
    • pp.116-127
    • /
    • 2016
  • Purpose: The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods: We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results: SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (P<0.01) while SPF demonstrated significant negative correlations with other microstructural parameters (Tb.Sp, Tb.Pf, and SMI) using micro-CT and CBCT (P<0.01). Conclusions: There was an increase in implant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses.

Laser-based THz Time-Domain Spectroscopy and Imaging Technology (레이저 기반 테라헤르츠 시간영역 분광 및 영상 기술)

  • Kang, Kwang-Yong;Kwon, Bong-Joon;Paek, Mun Cheol;Kang, Kyeong Kon;Cho, Suyoung;Kim, Jangsun;Lee, Senung-Churl;Lee, Dae-sung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.317-327
    • /
    • 2018
  • Terahertz (THz) time-domain spectroscopy(TDS), imaging techniques, and related systems have become mature technologies, widely used in many universities and research laboratories. However, the development of creative technologies still requires improved THz application systems. A few key points are discussed, including the innovative advances of mode-locking energy-emitting semiconductor lasers and better photoconductive semiconductor quantum structures. To realize a compact, low cost, and high performance THz system, it is essential that THz spectroscopy and imaging technologies are better characterized by semiconductor and nano-devices, both static and time-resolved. We introduce the THz spectroscopy and imaging systems, the OSCAT(Optical Sampling by laser CAvity Tuning) system and the ASOPS(ASynchronous Optical Sampling) system, are constructed by our research team. We report on the THz images obtained from their use.

Bladder volume variations of cervical cancer patient in radiation therapy using ultrasonography (초음파검사를 이용한 자궁경부암 환자의 방사선치료 시 방광 체적 변화)

  • Gong, Jong Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • Purpose : The bladder volume change was measured using ultrasonography for helping decrease the side effects and other organ variations in the location of radiation therapy for cervical cancer patients. An experiment was performed targeting patients who were treated with radiation therapy at PNUH within the period from September to December 2015. Materials and Methods : To maintain the bladder volume, each patient was instructed to drink 500 cc water before and after CT simulation, 60 minutes before the dry run. Also, the bladder volume was measured in each patient CT scan, and a 3D conformal therapy plan was designed. The bladder volumes measured before and after the CT simulation, dry run, and radiation treatment planning were compared and analyzed. Results : The average volume and average error of the bladder that were obtained from the measurement based on the CT scan images had the lowest standard deviation in the CT simulation. This means that the values that were obtained before and after the CT simulation were statistically relevant and correlative. Moreover, the bladder volume measured via ultrasonography was larger size, the average volume in the CT scan. But the values that were obtained Dry run and after the CT simulation were not statistically relevant. Conclusion : Drinking a certain amount of water helps a patient maintain his/her bladder volume for a dry run. Even then, it is difficult to maintain the bladder volume for the dry run. Also, whether or not the patients followed the directions for the dry run correctly is important.

  • PDF

A Study on the Analysis of Vegetation, Spatial Image and Visual Quality of Roadside Slopes in Chi-Ri Mt. National Park(II) -Landscape Analysis- (지리산(智異山) 국립공원(國立公園) 도로(道路)비탈면의 식생(植生)과 경관분석(景觀分析)에 관한 연구(硏究)(II) -경관분석(景觀分析)-)

  • Seo, Byung-Soo;Kim, Sei-Cheon;Park, Chong-Min;Lee, Chang-Heon;Lee, Kyu-Wan
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.3
    • /
    • pp.265-278
    • /
    • 1991
  • The purpose of this study is to suggest objective basic data for the design and management of the national park roadside slopes through the quantitative analysis of the visual quality included in the physical environment of the Chi-ri national park, for this, visual volumes of physical elements have been evaluated by using the mesh analysis, spatial images structure of physical elements have been analyzed by factor analysis algorithm, and degree of visual quality have been measured mainly by questionnaires. Result of this thesis can be summarized as fallows. Visual volumes of the naked, rock, ground cover of seed spray, and artificial planting are found to be the main factor determining the visual quality. Factors covering the spatial image of the national park roadside slopes landscape have been found to be the overall synthetic evaluation, spatial, appeal, physical, openness and dignity factors such as the overall the spatial, physical and openness yield high factor scores. As for the factors determining the degree of visual quality of the roadside slopes, variables such as the summit, the constructions management, harmony of landscape, visual stability of roadside slopes, suitable artificial planting and suitable constructions.

  • PDF

Experimental Examination of the Beer's law for Quantitative Electron Tomography (정량적 전자토모그래피를 위한 Beer's law의 실험적 검증)

  • Kim, Jin-Gyu;Song, Kyung;Lee, Su-Jeong;Jou, Hyeong-Tae;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • This study has examined experimentally the Beer's law which is a precondition for quantitative electron tomography. We used carbon support film and latex spheres, which have similar absorption coefficients with biological samples, as the test samples to take a tilt-series of images for electron tomography. First, the 3D information of carbon film and latex spheres was obtained by electron tomography. Then, the regression analysis on the relationship between the intensities of the incident and the transmitted beams in a tilt series was carried out to examine the Beer's law. The regression results with RMS error of 0.976 show the linear intensity variations of the transmitted beam as the tilt angles were increased. In addition, the relative absorption coefficients of carbon support film and latex spheres calculated experimentally through the Beer's law were 1.71 (5) and 2.67 (6)/${\mu}m$, respectively. The absorption coefficients remained constant within a full tilt range. Therefore, it is expected that quantitative electron tomography could be performed for biological samples by applying Beer's law provided the exact intensity of incident beam can be obtained under the thoroughly controlled experimental conditions.

Gaussian Noise Reduction Algorithm using Self-similarity (자기 유사성을 이용한 가우시안 노이즈 제거 알고리즘)

  • Jeon, Yougn-Eun;Eom, Min-Young;Choe, Yoon-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.1-10
    • /
    • 2007
  • Most of natural images have a special property, what is called self-similarity, which is the basis of fractal image coding. Even though an image has local stationarity in several homogeneous regions, it is generally non-stationarysignal, especially in edge region. This is the main reason that poor results are induced in linear techniques. In order to overcome the difficulty we propose a non-linear technique using self-similarity in the image. In our work, an image is classified into stationary and non-stationary region with respect to sample variance. In case of stationary region, do-noising is performed as simply averaging of its neighborhoods. However, if the region is non-stationary region, stationalization is conducted as make a set of center pixels by similarity matching with respect to bMSE(block Mean Square Error). And then do-nosing is performed by Gaussian weighted averaging of center pixels of similar blocks, because the set of center pixels of similar blocks can be regarded as nearly stationary. The true image value is estimated by weighted average of the elements of the set. The experimental results show that our method has better performance and smaller variance than other methods as estimator.

RPC Model Generation from the Physical Sensor Model (영상의 물리적 센서모델을 이용한 RPC 모델 추출)

  • Kim, Hye-Jin;Kim, Jae-Bin;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.4 s.27
    • /
    • pp.21-27
    • /
    • 2003
  • The rational polynomial coefficients(RPC) model is a generalized sensor model that is used as an alternative for the physical sensor model for IKONOS-2 and QuickBird. As the number of sensors increases along with greater complexity, and as the need for standard sensor model has become important, the applicability of the RPC model is also increasing. The RPC model can be substituted for all sensor models, such as the projective camera the linear pushbroom sensor and the SAR This paper is aimed at generating a RPC model from the physical sensor model of the KOMPSAT-1(Korean Multi-Purpose Satellite) and aerial photography. The KOMPSAT-1 collects $510{\sim}730nm$ panchromatic images with a ground sample distance (GSD) of 6.6m and a swath width of 17 km by pushbroom scanning. We generated the RPC from a physical sensor model of KOMPSAT-1 and aerial photography. The iterative least square solution based on Levenberg-Marquardt algorithm is used to estimate the RPC. In addition, data normalization and regularization are applied to improve the accuracy and minimize noise. And the accuracy of the test was evaluated based on the 2-D image coordinates. From this test, we were able to find that the RPC model is suitable for both KOMPSAT-1 and aerial photography.

  • PDF

Photoemission Electron Micro-spectroscopic Study of the Conductive Layer of a CVD Diamond (001)$2{\times}1$ Surface

  • Kono, S.;Saitou, T.;Kawata, H.;Goto, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.7-8
    • /
    • 2010
  • The surface conductive layer (SCL) of chemical vapor deposition (CVD) diamonds has attracting much interest. However, neither photoemission electron microscopic (PEEM) nor micro-spectroscopic (PEEMS) information is available so far. Since SCL retains in an ultra-high vacuum (UHV) condition, PEEM or PEEMS study will give an insight of SCL, which is the subject of the present study. The sample was made on a Ib-type HTHP diamond (001) substrate by non-doping CVD growthin a DC-plasma deposition chamber. The SCL properties of the sample in air were; a few tens K/Sq. in sheet resistance, ${\sim}180\;cm^2/vs$ in Hall mobility, ${\sim}2{\times}10^{12}/cm^2$ in carrier concentration. The root-square-mean surface roughness (Rq) of the sample was ~0.2nm as checked by AFM. A $2{\times}1$ LEED pattern and a sheet resistance of several hundreds K/Sq. in UHV were checked in a UHV chamber with an in-situ resist-meter [1]. The sample was then installed in a commercial PEEM/S apparatus (Omicron FOCUS IS-PEEM) which was composed of electro-static-lens optics together with an electron energy-analyzer. The presence of SCL was regularly monitored by measuring resistance between two electrodes (colloidal graphite) pasted on the two ends of sample surface. Figure 1 shows two PEEM images of a same area of the sample; a) is excited with a Hg-lamp and b) with a Xe-lamp. The maximum photon energy of the Hg-lamp is ~4.9 eV which is smaller that the band gap energy ($E_G=5.5\;eV$) of diamond and the maximum photon energy of the Xe-lamp is ~6.2 eV which is larger than $E_G$. The image that appear with the Hg-lamp can be due to photo-excitation to unoccupied states of the hydrogen-terminated negative electron affinity (NEA) diamond surface [2]. Secondary electron energy distribution of the white background of Figs.1a) and b) indeed shows that the whole surface is NEA except a large black dot on the upper center. However, Figs.1a) and 1b) show several features that are qualitatively different from each other. Some of the differences are the followings: the two main dark lines A and B in Fig.1b) are not at all obvious and the white lines B and C in Fig.1b) appear to be dark lines in Fig.1a). A PEEMS analysis of secondary electron energy distribution showed that all of the features A-D have negative electron affinity with marginal differences among them. These differences can be attributed to differences in the details of energy band bending underneath the surface present in SCL [3].

  • PDF

Evaluation of the Response of Radiotherapy to Squamous Cell Carcinoma of the Head and Neck using $^{18}FDG-PET$ (두경부 편평상피세포암종에서 $^{18}FDG-PET$을 이용한 방사선치료 반응평가)

  • Lee Sang-Wook;Ryu Jin-Sook;Yi Byong-Yong;Kim Jong-Hoon;Ahn Seung-Do;Shin Seong-Soo;Kim Sang-Yoon;Nam Soon-Yuhl;Song Si-Yeol;Yoon Sang-Min;Park Jin-Hong;Kim Sung-Bae;Kim Jae-Seung
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.1
    • /
    • pp.58-62
    • /
    • 2003
  • Purpose: To evaluate the efficacy of positron emission tomography with 2-[F-18] fluoro-2-deoxy-D-glucose in discrimination of response in the nasopharyngeal carcinoma patients who treated with radiotherapy. Methods and Materials: Twenty-four patients who underwent FDG-PET scan before and after radiotherapy for no disseminated head and neck carcinoma at the Asan Medical Center between August 2001 and September 2002 were evaluate by prospective analysis. First FDG-PET scan performed before radiotherapy within 1 month, and second FDG-PET scan performed 1 month after radiotherapy. FDG-PET images were analyzed by standard uptake value (SUV). Follow-up period was more than 6 months. Results: The pretreatment SUV was 3.4-14.0 (median: 6.0) and posttreatment SUV was ground level-7.7 (median: 2.0). The overall sensitivity and specicity of FDG-PET to evaluate residual tumors in the nasopharyngeal carcinoma patients were 94% and 94%. Conclusion: FDG-PET is effective in evaluation of radiation response in the nasopharyngeal carcinoma. We think that the timing of one month after finished radiotherapy FDG-PET scan was not too fast to evaluation of radiation response.

AN IN-VITRO EVALUATION OF SEALER PLACEMENT METHODS IN SIMULATED ROOT CANAL EXTENSIONS (근관 내 불규칙 확장부에서 sealer 적용방법에 따른 충전 효과 평가)

  • Kim, Sung-Young;Lee, Mi-Jeong;Moon, Jang-Won;Lee, Se-Joon;Yu, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • The aim of this study was to evaluate the effectiveness of sealer placement in simulated root canal extensions. Forty resin blocks were attained from the Endo-training Bloc. In each block. The simulated root canal was made with $\#20$, 80taper GT file. After each block was longitudinally split into two halves, a standardized groove was prepared on one canal wall of two halves to simulate the canal extensions with various irregularities. The two halves of each block were assembled and all simulated root canals were obturated by single cone method with AH26 sealer. Four different methods of sealer placement were used: group A, $\#20$ K-file; group B, ultrasonic file; group C, lentulo spiral; group D, EZ-Fill bi-directional spiral. All obturated blocks were stored in $100\%$ humidity at $37^{\circ}C$ for 1 week, Using a low speed saw, each block was sectioned horizontally. Images of the sections were taken using a stereomicroscope at $\times$ 30 magnification and a digital camera. The amount of the sealer in the groove was evaluated using a scoring system, a higher score indicated better sealing effectiveness. The data was statistically analysed by Fisher's Exact Test. The sealing score was the lowest, specially at the middle area of canal extensions in group A, and that was statistically significant difference from other groups. In conclusion, the ultrasonic file, lentulo spiral and EZ-Fill bi-directional spiral were effective methods of sealer placement in simulated canal extensions. The K file was the least effective method, specially at the middle area of canal extensions.