• Title/Summary/Keyword: 3D geometry

Search Result 1,137, Processing Time 0.024 seconds

Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement

  • Mohamed, Cherfi;Abderahmane, Sahli;Benbarek, Smail
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.37-43
    • /
    • 2018
  • In orthopedic surgery and in particular in total hip arthroplasty, the implant fixation is carried out using a surgical cement called polymethylmethacrylat (PMMA). This cement has to insure a good adhesion between implant and bone and a good load distribution to the bone. By its fragile nature, the cement can easily break when it is subjected to a high stress gradient by presenting a craze zone in the vicinity of inclusion. The focus of this study is to analyze the effect of inclusion in some zone of cement in which the loading condition can lead to the crack opening leading to their propagation and consequently the aseptic loosening of the THR. In this study, the fracture behavior of the bone cement including a strange body (bone remain) from which the onset of a crack is supposed. The effect of loading condition, the geometry, the presence of both crack and inclusion on the stress distribution and the fracture behavior of the cement. Results show that the highest stresses are located around the sharp tip of bony inclusion. Most critical cracks are located in the middle of the cement mantle when they are subjected to one leg standing state loading during walking.

The study of defrosting performance on automobile Windshield through different injection angle (Different injection angle에 따른 자동차 전면 유리 제상성능 연구)

  • Kang, Hyu-Goo;Lee, Kum-Bae;Kader, Md. Faisal;Oh, Gyu-Nam
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2454-2459
    • /
    • 2008
  • The objective of this paper is to find out the most effective injection angle for the purpose of deicing through SC/Tetra, a commonly used CFD software. Nowadays, vehicles are developed giving priority to an improved interior which emphasizes a pleasant environment and thermal comfort without decreasing the basic performance. Clear visibility is one of the most important phenomenon. The primary factors which affect the efficiency of deicing are 3D geometry of Defrost Nozzle, the inlet velocity and temperature of the flow and the injection angle. However in this paper, all these parameters are optimized by changing the injection angle. A wide range of injection angle from 5 degree to 50 degree have been considered for analysis. A very good defrosting performance has been achieved with 45 degree injection angle which can satisfy the condition of NHTSA.

  • PDF

A New Rectification Scheme for Uncalibrated Stereo Image Pairs and Its Application to Intermediate View Reconstruction

  • Ko, Jung-Hwan;Jung, Yong-Woo;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.26-34
    • /
    • 2005
  • In this paper, a new rectification scheme to transform the uncalibrated stereo image pair into the calibrated one is suggested and its performance is analyzed by applying this scheme to the reconstruction of the intermediate views for multi-view stereoscopic display. In the proposed method, feature points are extracted from the stereo image pair by detecting the comers and similarities between each pixel of the stereo image pair. These detected feature points, are then used to extract moving vectors between the stereo image pair and the epipolar line. Finally, the input stereo image pair is rectified by matching the extracted epipolar line between the stereo image pair in the horizontal direction. Based on some experiments done on the synthesis of the intermediate views by using the calibrated stereo image pairs through the proposed rectification algorithm and the uncalibrated ones for three kinds of stereo image pairs; 'Man', 'Face' and 'Car', it is found that PSNRs of the intermediate views reconstructed from the calibrated images improved by about 2.5${\sim}$3.26 dB than those of the uncalibrated ones.

Three-dimensional finite element modeling of a transverse top-down crack in asphalt concrete

  • Ayatollahi, Majid R.;Pirmohammad, Sadjad;Sedighiani, Karo
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.569-585
    • /
    • 2014
  • In this paper, a four-layer road structure consisting of an edge transverse crack is simulated using three-dimensional finite element method in order to capture the influence of a single-axle wheel load on the crack propagation through the asphalt concrete layer. Different positions of the vehicular load relative to the cracked area are considered in the analyses. Linear elastic fracture mechanics (LEFM) is used for investigating the effect of the traffic load on the behavior of a crack propagating within the asphalt concrete. The results obtained show that the crack front experiences all three modes of deformation i.e., mode I, mode II and mode III, and the corresponding stress intensity factors are highly affected by the crack geometry and the vehicle position. The results also show that for many loading situations, the contribution of shear deformation (due to mode II and mode III loading) is considerable.

Pentacene Thin Film Transistors with Various Polymer Gate Insulators

  • Kim, Jae-Kyoung;Kim, Jung-Min;Yoon, Tae-Sik;Lee, Hyun-Ho;Jeon, D.;Kim, Yong-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.118-122
    • /
    • 2009
  • Organic thin film transistors with a pentacene active layer and various polymer gate insulators were fabricated and their performances were investigated. Characteristics of pentacene thin film transistors on different polymer substrates were investigated using an atomic force microscope (AFM) and x-ray diffraction (XRD). The pentacene thin films were deposited by thermal evaporation on the gate insulators of various polymers. Hexamethyldisilazane (HMDS), polyvinyl acetate (PVA) and polymethyl methacrylate (PMMA) were fabricated as the gate insulator where a pentacene layer was deposited at 40, 55, 70, 85, 100 oC. Pentacene thin films on PMMA showed the largest grain size and least trap concentration. In addition, pentacene TFTs of top-contact geometry are compared with PMMA and $SiO_2$ as gate insulators, respectively. We also fabricated pentacene TFT with Poly (3, 4-ethylenedioxythiophene)-Polysturene Sulfonate (PEDOT:PSS) electrode by inkjet printing method. The physical and electrical characteristics of each gate insulator were tested and analyzed by AFM and I-V measurement. It was found that the performance of TFT was mainly determined by morphology of pentacene rather than the physical or chemical structure of the polymer gate insulator

Trivariate B-spline Approximation of Spherical Solid Objects

  • Kim, Junho;Yoon, Seung-Hyun;Lee, Yunjin
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.23-35
    • /
    • 2014
  • Recently, novel application areas in digital geometry processing, such as simulation, dynamics, and medical surgery simulations, have necessitated the representation of not only the surface data but also the interior volume data of a given 3D object. In this paper, we present an efficient framework for the shape approximations of spherical solid objects based on trivariate B-splines. To do this, we first constructed a smooth correspondence between a given object and a unit solid cube by computing their harmonic mapping. We set the unit solid cube as a rectilinear parametric domain for trivariate B-splines and utilized the mapping to approximate the given object with B-splines in a coarse-to-fine manner. Specifically, our framework provides user-controllability of shape approximations, based on the control of the boundary condition of the harmonic parameterization and the level of B-spline fitting. Experimental results showed that our method is efficient enough to compute trivariate B-splines for several models, each of whose topology is identical to a solid sphere.

DEM generation from an IKONOS stereo pair using EpiMatch and Graph-Cut algorithms

  • Kim, Tae-Jung;Im, Yong-Jo;Kim, Ho-Won;Kweon, In-So
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.524-529
    • /
    • 2002
  • In this paper, we report the development of two DEM (digital elevation model) generation algorithms over urban areas from an IKONOS stereo pair. One ("EpiMatch") is originally developed for SPOT images and modified for IKONOS images. It uses epipolar geometry for accurate DEM generation. The other is based on graph-cut algorithm in 3D voxel space. This algorithm is believed to work better on height discontinuities than EpiMatch. An IKONOS image pair over Taejon city area was used for tests. Using ground control points obtained from differential GPS, camera model was set up and stereo matching applied. As a result, two DEMs over urban areas were produced. Within a DEM from EpiMatch small houses appear as small "cloudy" patches and large apartment and industrial buildings are visually identifiable. Within the DEM from graph-cut we could achieve better height information on building boundaries. The results show that both algorithms can generate DEMs from IKONOS images although more research is required on handling height discontinuities (for "EpiMatch") and on faster computation (for "Graph-cut").

  • PDF

Numerical Analysis for the Injection Molding of an Aspheric Lens for a Photo Pick-up Device (광픽업용 비구면 렌즈 사출성형 공정의 수치해석)

  • 박근;한철엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.163-170
    • /
    • 2004
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, however, numerical analysis based on solid elements has been reported as more reliable approach than shell -based one. The present work covers three-dimensional injection molding simulation using MP1/Flow3D and relevant deformation analysis of an injection molded plastic lens based on solid elements. Numerical analysis has been applied to the injection molding processes of an aspheric lens for a photo pick-up device. The reliability of the proposed approach has been verified in comparison with the experiments.

Development of A Small VCM Focusing Actuator Using Curved Suspensions (곡선 서스펜션을 사용한 초소형 VCM 포커싱 구동기 개발)

  • Shin, Young-Chul;Lee, Seung-Yop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2008
  • This paper proposes small VCM(voice coil motor) type, auto-focusing and zoom actuators for mobile information devices. In order to meet the large output displacement within small height restriction, the proposed auto-focusing actuator adopts curved suspensions, which are similar to a leaf-spring type suspension of optical disk drives. The sensitivity of design parameters on output displacement and dynamic performance is implemented using ANSYS (3D FEM tool) to determine the optimal geometry and stiffness of the curved suspensions. This paper also investigates a new zoom actuator without a suspension supporting a bobbin. The zoom actuator uses a moving rail and a stoper mechanism by generating rotational force at lens holder. Magnetic flux density of the zoom actuator are calculated by both the FEM and permeance method. Experiments using prototypes of the proposed focusing and zoom models show that both actuators meet the required displacement and performance.

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.