• Title/Summary/Keyword: 3D geometry

Search Result 1,137, Processing Time 0.03 seconds

Design of an Effective Bump Mapping Hardware Architecture Using Angular Operation (각 연산을 이용한 효과적인 범프 매핑 하드웨어 구조 설계)

  • 이승기;박우찬;김상덕;한탁돈
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.663-674
    • /
    • 2003
  • Bump mapping is a technique that represents the detailed parts of the object surface, such as a perturberance of the skin of a peanut, using the geometry mapping without complex modeling. However, the hardware implementation for bump mapping is considerable, because a large amount of per pixel computation, including the normal vector shading, is required. In this paper, we propose a new bump mapping algorithm using the polar coordinate system and its hardware architecture. Compared with other existing architectures, our approach performs bump mapping effectively by using a new vector rotation method for transformation into the reference space and minimizing illumination calculation. Consequently, our proposed architecture reduces a large amount of computation and hardware requirements.

Design of 5.8GHz Band 4×4 Butler Matrix using Commercial 90° Hybrid Coupler (상용 90도 하이브리드 커플러를 이용한 5.8GHz 대역 4×4 버틀러매트릭스 설계)

  • Park, Byeong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.200-205
    • /
    • 2014
  • In this paper, 5.8GHz band $4{\times}4$ Butler matrix is designed using easily accessible commercial $90^{\circ}$ hybrid coupler and semirigid coaxial cable as a transmission line. This Butler matrix is very flexible to changes of antenna system specification like a frequency band because $90^{\circ}$ hybrid coupler changing is all to do. The result of design is the distance of $2{\times}2$ array antenna element is $\sqrt{2}{\lambda}/4$, the 4 beam directions are diagonal of array antenna and phase shifter is not necessary. The beam width is roughly $25^{\circ}$ narrower because of array antenna geometry and the side lobe is about 10dB higher partially than theoretical beam pattern. But the overall beam pattern is similar with theoretical beam. This Butler matrix can be applied to switching beam antenna of 5.8GHz band Wi-Fi and WAVE system.

A Study of Aerodynamic Analysis for the Wind Turbine Rotor Blade using a general CFD code (풍력 발전기용 블레이드 공력해석에 대한 연구)

  • Park, Sang-Gyoo;Kim, Jin-Bum;Yeo, Chang-Ho;Kim, Tae-Woo;Kweon, Ki-Yeoung;Oh, Si-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.516-520
    • /
    • 2009
  • This study describes aerodynamic characteristics for the HAWT (Horizontal Axis Wind Turbine) rotor blade using general CFD(Computational Fluid Dynamics) code. The boundary conditions for analysis are validated with the experimental result by the NREL (National Renewable Energy Laboratory)/NASA Ames wind tunnel test for S809 airfoil. In the case of wind turbine rotor blade, complex phenomena are appeared such as flow separation and re-attachment. Those are handled by using a commercial flow analysis tool. The 2-equation k-$\omega$ SST turbulence model and transition model appear to be well suited for the prediction. The 3-dimensional phenomena in the HAWT rotor blade is simulated by a commercial 3-D aerodynamic analysis tool. Tip vortex geometry and Radial direction flows along the blade are checked by the analysis.

  • PDF

Transition of Turbulent Boundary Layer with a Step Change from Smooth to Rough Surface (표면 형상 변화에 따른 난류경계층 유동장 분석)

  • Lee, Jae Hwa
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.3
    • /
    • pp.15-20
    • /
    • 2014
  • Direct numerical simulation (DNS) dataset of a turbulent boundary layer (TBL) with a step change from smooth to rough surface is analyzed to examine spatially developing flow characteristics. The roughness elements are periodically arranged two-dimensional (2-D) spanwise rods with a streamwise pitch of ${\lambda}=8k$ ($=12{\theta}_{in}$), and the roughness height is $k=15{\theta}_{in}$, where ${\theta}_{in}$ is the inlet momentum thickness. The step change is introduced $80{\theta}_{in}$ downstream from the inlet. For the first time, full images from the DNS data with the step change from the smooth to rough walls is present to get some idea of the geometry of turbulent coherent structures over rough wall, especially focusing on their existence and partial dynamics over the rough wall. The results show predominance of hairpin vortices over the rough wall and their spanwise scale growth mechanism by merging.

Estimation of Wind Velocity Using Motion Tracking of a Balloon (풍선의 움직임 추적을 이용한 바람 속도 벡터 추정)

  • Oh, Hyeju;Jo, Sungbeom;Choi, Keeyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.833-841
    • /
    • 2014
  • This paper proposes an algorithm to estimate the wind velocity by tracking free flying balloons. Balloons used in this method are expendable but inexpensive, which increases the usefulness of the method. Also we can obtain accurate 3D information by using multiple cameras and estimate the wind velocity of the local field. The proposed system consists of aerodynamic modeling of the balloon, a tracking algorithm using image processing, and the velocity estimation algorithm. We performed unit tests of each algorithm for the verification. The method is validated using a system simulation and sources of error case identified.

Segmentation of Measured Point Data for Reverse Engineering (역공학을 위한 측정점의 영역화)

  • 양민양;이응기
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.3
    • /
    • pp.173-179
    • /
    • 1999
  • In reverse engineering, when a shape containing multi-patched surfaces is digitized, the boundaries of these surfaces should be detected. The objective of this paper is to introduce a computationally efficient segmentation technique for extracting edges, ad partitioning the 3D measuring point data based on the location of the boundaries. The procedure begins with the identification of the edge points. An automatic edge-based approach is developed on the basis of local geometry. A parametric quadric surface approximation method is used to estimate the local surface curvature properties. the least-square approximation scheme minimizes the sum of the squares of the actual euclidean distance between the neighborhood data points and the parametric quadric surface. The surface curvatures and the principal directions are computed from the locally approximated surfaces. Edge points are identified as the curvature extremes, and zero-crossing, which are found from the estimated surface curvatures. After edge points are identified, edge-neighborhood chain-coding algorithm is used for forming boundary curves. The original point set is then broke down into subsets, which meet along the boundaries, by scan line algorithm. All point data are applied to each boundary loops to partition the points to different regions. Experimental results are presented to verify the developed method.

  • PDF

Forisome based biomimetic smart materials

  • Shen, Amy Q.;Hamlington, B.D.;Knoblauch, Michael;Peters, Winfried S.;Pickard, William F.
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.225-235
    • /
    • 2006
  • With the discovery in plants of the proteinaceous forisome crystalloid (Knoblauch, et al. 2003), a novel, non-living, ATP-independent biological material became available to the designer of smart materials for advanced actuating and sensing. The in vitro studies of Knoblauch, et al. show that forisomes (2-4 micron wide and 10-40 micron long) can be repeatedly stimulated to contract and expand anisotropically by shifting either the ambient pH or the ambient calcium ion concentration. Because of their unique abilities to develop and reverse strains greater than 20% in time periods less than one second, forisomes have the potential to outperform current smart materials as advanced, biomimetic, multi-functional, smart sensors or actuators. Probing forisome material properties is an immediate need to lay the foundation for synthesizing forisomebased smart materials for health monitoring of structural integrity in civil infrastructure and for aerospace hardware. Microfluidics is a growing, vibrant technology with increasingly diverse applications. Here, we use microfluidics to study the surface interaction between forisome and substrate and the conformational dynamics of forisomes within a confined geometry to lay the foundation for forisome-based smart materials synthesis in controlled and repeatable environment.

ANALOG COMPUTING FOR A NEW NUCLEAR REACTOR DYNAMIC MODEL BASED ON A TIME-DEPENDENT SECOND ORDER FORM OF THE NEUTRON TRANSPORT EQUATION

  • Pirouzmand, Ahmad;Hadad, Kamal;Suh, Kune Y.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.243-256
    • /
    • 2011
  • This paper considers the concept of analog computing based on a cellular neural network (CNN) paradigm to simulate nuclear reactor dynamics using a time-dependent second order form of the neutron transport equation. Instead of solving nuclear reactor dynamic equations numerically, which is time-consuming and suffers from such weaknesses as vulnerability to transient phenomena, accumulation of round-off errors and floating-point overflows, use is made of a new method based on a cellular neural network. The state-of-the-art shows the CNN as being an alternative solution to the conventional numerical computation method. Indeed CNN is an analog computing paradigm that performs ultra-fast calculations and provides accurate results. In this study use is made of the CNN model to simulate the space-time response of scalar flux distribution in steady state and transient conditions. The CNN model also is used to simulate step perturbation in the core. The accuracy and capability of the CNN model are examined in 2D Cartesian geometry for two fixed source problems, a mini-BWR assembly, and a TWIGL Seed/Blanket problem. We also use the CNN model concurrently for a typical small PWR assembly to simulate the effect of temperature feedback, poisons, and control rods on the scalar flux distribution.

Homogenization of KMRR Hafnium Control Assembly for 3-D Diffusion Calculation (3차원 중성자 확산계산을 위한 KMRR Hafnium 조정집합체 균질화에 대한 연구)

  • Park, Hang-Bok;Kim, Young-Jin;Kim, Hark-Rho;Lee, Ji-Bok
    • Nuclear Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.233-240
    • /
    • 1988
  • The hafnium shroud is used to control the excess reactivity and power distribution in KMRR. The core analysis is performed by the diffusion code VENTURE using the 5 group macroscopic cross sections homogenized for an assembly. Investigated are the applicability of the diffusion calculation by homogenized cross sections to the analysis of control assembly which features unusual geometry such that hafnium shroud surrounds a multiplying medium inside. Comparative calculation is performed for the excess reactivity and power levels by the transport code TWOTRAN. The results show the acceptability of the diffusion calculation by the homogenized cross sections without significant error.

  • PDF

Cavitation in a Shaft-less Double Suction Centrifugal Miniature Pump

  • Zhuang, Baotang;Luo, Xianwu;Zhu, Lei;Wang, Xin;Xu, Hongyuan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.191-198
    • /
    • 2011
  • Based on the consideration that the cavitation would affect the operation stability of miniature pumps, the 3-D turbulent cavitating flow in a test pump was simulated by using a mixed cavitation model and k-${\omega}$ SST turbulence model. In order to investigate the influence of inlet geometry parameters on the cavitation performance of the miniature pump, two more impellers are designed for comparison. Based on the results, the following conclusions are drawn: 1) Cavitation performance of the double suction shaft-less miniature pump having different impeller is equivalent to the centrifugal pump having ordinary size, though the flow passage at impeller inlet is small; 2) The miniature pump having radial impeller can produce much higher pump head, but lower cavitation performance than that having the impeller based on the conventional design method; 3) It is believed that by applying the double suction design, the miniature pump achieved relatively uniform flow pattern upstream the impeller inlet, which is favorable for improving cavitation performance.