DOI QR코드

DOI QR Code

Forisome based biomimetic smart materials

  • Shen, Amy Q. (Department of Mechanical and Aerospace Engineering, Washington University) ;
  • Hamlington, B.D. (Department of Mechanical and Aerospace Engineering, Washington University) ;
  • Knoblauch, Michael (Fraunhofer Institute for Molecular Biology and Applied Ecology) ;
  • Peters, Winfried S. (Institute for General Botany, Liebig University) ;
  • Pickard, William F. (Department of Electrical and System Engineering, Washington University)
  • Received : 2005.07.01
  • Accepted : 2005.12.01
  • Published : 2006.07.25

Abstract

With the discovery in plants of the proteinaceous forisome crystalloid (Knoblauch, et al. 2003), a novel, non-living, ATP-independent biological material became available to the designer of smart materials for advanced actuating and sensing. The in vitro studies of Knoblauch, et al. show that forisomes (2-4 micron wide and 10-40 micron long) can be repeatedly stimulated to contract and expand anisotropically by shifting either the ambient pH or the ambient calcium ion concentration. Because of their unique abilities to develop and reverse strains greater than 20% in time periods less than one second, forisomes have the potential to outperform current smart materials as advanced, biomimetic, multi-functional, smart sensors or actuators. Probing forisome material properties is an immediate need to lay the foundation for synthesizing forisomebased smart materials for health monitoring of structural integrity in civil infrastructure and for aerospace hardware. Microfluidics is a growing, vibrant technology with increasingly diverse applications. Here, we use microfluidics to study the surface interaction between forisome and substrate and the conformational dynamics of forisomes within a confined geometry to lay the foundation for forisome-based smart materials synthesis in controlled and repeatable environment.

Keywords

References

  1. Baz, A. (2001), 'Vibration control with shape memory alloys', Encyclopedia of Vibration, Ed. by Simmons, Ewins and Rao, Academic Press
  2. Bennett, M. D. and Leo, D. J. (2003), 'Manufacture and characterization of ionic polymer transducers employing non-precious metal electrodes', Smart Mater. Struct., 12, 424-436 https://doi.org/10.1088/0964-1726/12/3/314
  3. Bray, D. (2001), Cell movements: from molecules to motility, 2nd ed. Garland Publishing
  4. Chua, C. L. Chollet, F. and He, J. (2003), 'Study of biological actuator and sensor: The mimosa pudica', Int. J. Comput. Eng., Sci., 559-562
  5. Culshaw, B. (1995), Smart Structure and Materials, Artech House, Boston, London
  6. Egusa, S. and Iwasawa, N. (1998), 'Piezoelectric paints as one approach to smart structural materials with health-monitoring capabilities', Smart Mater. Struct., 7, 438-445 https://doi.org/10.1088/0964-1726/7/4/002
  7. de Gennes, P. G. (1985), 'Wetting: statics and dynamics', Review of Modern Physics, 3, 827-863
  8. Ghoshal, A., Prosser, W. H., Kirikera, G., Schulz, M. J., Hughes, D. J. and Orisamolu, W. (2003), 'Concepts and development of bio-inspired distributed embedded wired/wireless sensor array architectures foracoustic wave sensing in integrated aerospace vehicles', 4th International Workshop on Structural Health Monitoring, California
  9. Giurgiutiu, V. and Rogers, V. (1997), 'Power and Energy characteristics of solid-state induced-strain actuators for static and dynamic applications', J. Intelligent Mater. Syst. Struct., 738-75
  10. Gobby, D., Angeli, P. and Gavriilidis, A. (2001), 'Mixing characteristics of T-type microfluidic mixers', J. Micromechanics, 11, 126-132 https://doi.org/10.1088/0960-1317/11/2/307
  11. Hetherington, A. M. and Woodward, F. I. (2003), 'The role of stomata in sensing and driving environmental change', Nature, 424, 901-908 https://doi.org/10.1038/nature01843
  12. Knoblauch, M., Noll, G. A., Muller, T., P겨ifer, D., Schneider-Huther, I., Scharner, D., van Bel, A. J. E. and Peters, W. S. (2003), 'ATP-independent contractile proteins from plants', Nature Materials, 2, 600-603 https://doi.org/10.1038/nmat960
  13. Knoblauch, M., Peters, W. S., Ehlers, W. S. and van Bel, A. J. E. (2001), 'Reversible calcium-regulated stopcocks in legume sieve tubes', Plant Cell, 13, 1221-1230 https://doi.org/10.1105/tpc.13.5.1221
  14. Knoblauch, M. and Peters, W. S. (2004a), 'Forisomes, a novel type of Ca$^{2+}$-dependent contractile protein motor', Cell Motility and the Cytoskeleton 58, 137-142 https://doi.org/10.1002/cm.20006
  15. Knoblauch, M. and Peters, W. S. (2004b), 'Biomimetic actuators: where technology and cell biology merge', Cellular and Molecular Life Sciences, 61, 2497-2509 https://doi.org/10.1007/s00018-004-4158-0
  16. Kuhn, W., Hargitay, B., Katchalsky, A. and Eisenberg, H. (1950), 'Reversible dilatation and contraction by changing the state of ionization of high-polymer acid network', Science, 165, 514-516
  17. Lang, A. and Minchin, E. E. H. (1986), 'Phylogenetic distribution and mechanism of translocation inhibition by chilling', J. Experimental Botany, 37, 389-398 https://doi.org/10.1093/jxb/37.3.389
  18. Lin, M. and Chang, F. K. (2002), 'The manufacture of composite structures with a built-in network of piezoceramics', Composites Science and Technology, 62, 919-939 https://doi.org/10.1016/S0266-3538(02)00007-6
  19. Liu, S. C. and Tomizuka, M. (2003), 'Vision and strategy for sensors and smart structures technology research', Structural Health Monitoring, Ed. Fu-Kuo Chang
  20. Ma, K. (2003), 'Vibration control of smart structures with bonded PZT patches: novel adaptive filtering algorithm and hybrid control scheme', Smart Mater. Struct., 12, 473-482 https://doi.org/10.1088/0964-1726/12/3/319
  21. Mavroidis, C. and Dubey, A. (2003), 'Biornimetics: From pulses to motors', Nature, 2, 573 https://doi.org/10.1038/nmat973
  22. Nemat-Nasser, S. (2002), 'Micrornechanics of actuation of ionic polymer-metal composites', J. Appl. Phy., 92(5), 2899-2915 https://doi.org/10.1063/1.1495888
  23. Pickard, W. F. and Minchin, P. E. H. (1990), 'The transient inhibition of phloem translocation in phaseolus vulganis by abrupt temperature drops, vibration, and electric shock', J. Cyperimental Botany, 41, 1361-1369.
  24. Polla, D. L. and Francis, L. F. (1998), 'Processing and characterization of piezoelectric materials and integration into microelectromechanical systems', Annual Review of Materials Science, 28, 563-597 https://doi.org/10.1146/annurev.matsci.28.1.563
  25. Sahoo, H., Pavoor, T., Vancheeswaran, S. (2001), 'Actuators based on electroactive polymers', Current Science, 81, 743-746
  26. Shahinpoor, M. and Thompson, M. S. (1995), 'The venus flytrap as a model for a biomimetic material with built-in sensors and actuators', Materials Science and Engineering, C2, 229-233
  27. Shahinpoor, M. (2003), 'Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles - a review', Electrochimica Acta, 48, 2343-2353 https://doi.org/10.1016/S0013-4686(03)00224-X
  28. Stone, H. A. and Kim, S. (2001), 'Microfluidics: Basic issues, applications, and challenges', AICHE J., 47, 1250-1254 https://doi.org/10.1002/aic.690470602
  29. Stroock, A. Dertinger, S. Ajdari, A., Mezic, I., Stone, H. A. and Whitesides, G. (2002), 'Chaotic mixer for Microchannels', Science, 295, 647-651 https://doi.org/10.1126/science.1066238
  30. Tadaki, T., Otsuka, K. and Shimizu, K. (1988), 'Shape memory alloys', Annual Review of Materials Science, 18, 25-30 https://doi.org/10.1146/annurev.ms.18.080188.000325
  31. Uchida, M. and Taya, M. (2001), 'Solid polymer electrolyte actuator using electrode reaction', Polymer, 42, 9281-9285 https://doi.org/10.1016/S0032-3861(01)00457-8
  32. Ueda, M. and Yamamura, S. (2000), 'Chemistry and biology of plant leaf movements', Angewandte Chemie International Edition, 39, 1400-1414 https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1400::AID-ANIE1400>3.0.CO;2-Z
  33. Xia, Y. and Whitesides, G. M. (1998), 'Soft lithography', Annual Review of Materials Science, 28, 153-184 https://doi.org/10.1146/annurev.matsci.28.1.153
  34. Yu, Q., Bauer, J., Beebe, D. and Moore, J. (2001), 'A responsive bio-mimetic hydrogel valve for microfluidics', Applied Physics Letters, 78, 2589-2591 https://doi.org/10.1063/1.1367010

Cited by

  1. Calcium powered phloem protein ofSEOgene family “Forisome” functions in wound sealing and act as biomimetic smart materials vol.9, pp.9, 2014, https://doi.org/10.4161/psb.29438
  2. The structure and functionality of contractile forisome protein aggregates vol.29, pp.2, 2008, https://doi.org/10.1016/j.biomaterials.2007.09.020
  3. Elastic properties of the forisome vol.34, pp.10, 2007, https://doi.org/10.1071/FP07132
  4. Gel Sensors and Actuators vol.33, pp.03, 2008, https://doi.org/10.1557/mrs2008.46
  5. Native and artificial forisomes: functions and applications vol.89, pp.6, 2011, https://doi.org/10.1007/s00253-011-3117-6
  6. Vorticella: A Protozoan for Bio-Inspired Engineering vol.8, pp.12, 2017, https://doi.org/10.3390/mi8010004
  7. A Biohybrid Microfluidic Valve Based on Forisome Protein Complexes vol.17, pp.6, 2008, https://doi.org/10.1109/JMEMS.2008.2007241
  8. Responsive polymers for nanoscale actuation vol.11, pp.7-8, 2008, https://doi.org/10.1016/S1369-7021(08)70146-9
  9. Product and technology innovation: What can biomimicry inspire? vol.32, pp.8, 2014, https://doi.org/10.1016/j.biotechadv.2014.10.002
  10. Bio-microfluidics: Biomaterials and Biomimetic Designs vol.22, pp.2, 2010, https://doi.org/10.1002/adma.200900821
  11. Sensors, smart structures technology and steel structures vol.4, pp.5, 2008, https://doi.org/10.12989/sss.2008.4.5.517
  12. Synthetic bio-actuators and their applications in biomedicine vol.7, pp.3, 2006, https://doi.org/10.12989/sss.2011.7.3.185
  13. Bio-inspired neuro-symbolic approach to diagnostics of structures vol.7, pp.3, 2006, https://doi.org/10.12989/sss.2011.7.3.229