• Title/Summary/Keyword: 3D finite element model

Search Result 1,088, Processing Time 0.026 seconds

Development of an Automation Tool for the Three-Dimensional Finite Element Analysis of Machine Tool Spindles

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.166-171
    • /
    • 2015
  • In this study, an automation tool was developed for rapid evaluation of machine tool spindle designs with automated three-dimensional finite element analysis (3D FEA) using solid elements. The tool performs FEA with the minimum data of point coordinates to define the section of the spindle shaft and bearing positions. Using object-oriented programming techniques, the tool was implemented in the programming environment of a CAD system to make use of its objects. Its modules were constructed with the objects to generate the geometric model and then to convert it into the FE model of 3D solid elements at the workbenches of the CAD system using the point data. Graphic user interfaces were developed to allow users to interact with the tool. This tool is helpful for identification of a near optimal design of the spindle based on, for example, stiffness with multiple design changes and then FEAs.

Computational analysis of hemodynamics in a human ventricular model (인간 심실모델에서의 혈류역학 해석)

  • Shim, Eun-Bo;Kwon, Soon-Sung;Kim, Yoo-Seok;Jung, Hyung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2947-2950
    • /
    • 2007
  • A 3D human ventricular model is proposed to simulate an integrative analysis of heart physiology and blood hemodynamics. This consists of the models of electrophysiology of human cells, electric wave propagation of tissue, heart solid mechanics, and 3D blood hemodynamics. The 3D geometry of human heart is discretized to a finite element mesh for the simulation of electric wave propagation and mechanics of heart. In cellular level, excitations by action potential are simulated using the existing human model. Then the contraction mechanics of a whole cell is incorporated to the excitation model. The excitation propagation to ventricular cells are transiently computed in the 3D cardiac tissue using a mono-domain method of electric wave propagation in cardiac tissue. Blood hemodynamics in heart is also considered and incorporated with muscle contraction. We use a PISO type finite element method to simulate the blood hemodynmaics in the human ventricular model.

  • PDF

Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates

  • Belarbia, Mohamed-Ouejdi;Tatib, Abdelouahab;Ounisc, Houdayfa;Benchabane, Adel
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.473-506
    • /
    • 2016
  • The aim of this work is the development of a 2D quadrilateral isoparametric finite element model, based on a layerwise approach, for the bending analysis of sandwich plates. The face sheets and the core are modeled individually using, respectively, the first order shear deformation theory and the third-order plate theory. The displacement continuity condition at the interfaces 'face sheets-core' is satisfied. The assumed natural strains method is introduced to avoid an eventual shear locking phenomenon. The developed element is a four-nodded isoparametric element with fifty two degrees-of-freedom (52 DOF). Each face sheet has only two rotational DOF per node and the core has nine DOF per node: six rotational degrees and three translation components which are common for the all sandwich layers. The performance of the proposed element model is assessed by six examples, considering symmetric/unsymmetric composite sandwich plates with different aspect ratios, loadings and boundary conditions. The numerical results obtained are compared with the analytical solutions and the numerical results obtained by other authors. The results indicate that the proposed element model is promising in terms of the accuracy and the convergence speed for both thin and thick plates.

Mathematical Model of Two-Degree-of-Freedom Direct Drive Induction Motor Considering Coupling Effect

  • Si, Jikai;Xie, Lujia;Han, Junbo;Feng, Haichao;Cao, Wenping;Hu, Yihua
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1227-1234
    • /
    • 2017
  • The two-degree-of-freedom direct drive induction motor, which is capable of linear, rotary and helical motion, has a wide application in special industry such as industrial robot arms. It is inevitable that the linear motion and rotary motion generate coupling effect on each other on account of the high integration. The analysis of this effect has great significance in the research of two-degree-of-freedom motors, which is also crucial to realize precision control of them. The coupling factor considering the coupling effect is proposed and addressed by 3D finite element method. Then the corrected mathematical model is presented by importing the coupling factor. The results from it are verified by 3D finite element model and prototype test, which validates the corrected mathematical model.

Finite Element Analysis of 3D Transient Thermo-mechanical Behav-ior of Work Roll in Hot Strip Rolling (열연중 Work Roll의 3차원 비정상상태 열변형 유한요소 해석)

  • 황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.261-264
    • /
    • 1999
  • An integrated finite element-based model is presented for the prediction of the three dimensional tran-sient thermo-mechanical behavior of the work roll in hot strip rolling. The model is comprised of basic finite element models which are incorporated into an iterative solution procedure to deal with the inter-dependence between the thermo-mechanical behavior of the strip and that of the work roll which arises from roll-strip contact as well as with the interdependence between the thermal and mechanical behav-ior Demonstrated is the capability of the model to reveal the detailed aspects of the thermo-mechanical behavior and to reflect the effect of various process parameters.

  • PDF

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

Axisymmetric Temperature Analysis of Ventilated Disk using Equivalent Parameters (등가상수를 이용한 벤트레이트 디스크의 축대칭 온도 해석)

  • 여태인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.137-142
    • /
    • 2003
  • In automotive brake systems, the frictional heat generated can cause high temperature at the interface of rotor and pad which may deteriorate the material properties of the sliding parts and can result in brake fade. Conventionally, a pie-shaped 3-dimentional model is adopted to calculate temperature of ventilated disk using finite element method. To overcome the difficulties in preparing 3D finite element model and reduce the computational time required, the ventilated rotor is to be analyzed, in this study, as an axisymmetric finite element model in which, taking into considerations the effects of cooling passages, a homogenization technique is used to obtain the equivalent thermal properties and boundary conditions for the elements placed at the vent holes. Numerical tests show the proposed procedure can be successfully applied in practice, replacing 3-dimensional thermal analysis of ventilated disk.

Finite Element Analysis of Earth Retention System with Prestressed Wales (프리스트레스트 띠장을 적용한 흙막이 시스템의 유한요소해석)

  • Park, Jong-Sik;Kim, Sung-Kyu;Joo, Yong-Sun;Kim, Nak-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.25-34
    • /
    • 2008
  • A finite element analysis was performed for new earth retention system with prestressed wales. A 3D finite element model was adopted in this study to investigate the behavior of the earth retention system with prestressed wales. A procedure of the 3D finite element modeling of this earth retention system was presented. The procedure included the modeling of soil, wall, strut, and members of prestressed wale system which consists of wale, support leg, and steel wires, and the interface modeling of soil-wall and wall-wale. The numerical predictions of lateral wall deflection, and axial load on the members of prestressed wale systems and struts were evaluated in comparison with the measurements obtained from field instruments. A sensitivity analysis was performed using the proposed 3D finite element model to investigate the behavior of new earth retention system on a wide range of prestress load conditions of steel wires. The lateral deflection of the wall and wale, the bending moment of the wale, and the lateral earth pressure distribution on the wall were computed. Implications of the results from this study were discussed.

Prediction and Evaluation of Drawbead Restraining Force with Finite Element Analysis (유한요소해석을 통한 드로우비드 저항력의 예측 및 평가)

  • Bae G. H.;Song J. H.;Kim S. H.;Kim D. J.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.87-90
    • /
    • 2005
  • The drawbead is used to control the material flow into the die and increase the forming quality during the binder wrap process and the stamping process in the sheet metal forming. Drawbead restraining force (DBRF) is controlled by geometrical parameters and influenced by process parameters such as friction coefficient and blank thickness. In order to inspect the effect of process parameters, parameter studies are performed with the variation of parameters using finite element model of drawbead which is utilized reliably for the calculation of the drawbead restraining force. Drawbead analysis is carried out with 2-D plane-strain element and 3-D shell element. After the verification of the accuracy of the drawbead model with 3-D shell element, it is utilized to the prediction and the investigation of the effect of process parameters. The result of parameter studies can be utilized to the die design in the tryout stage.

  • PDF

Random Vibration Analysis of Thick Composite Laminated Plate Using Mixed Finite Element Model (1) (혼합유한요소모델을 이용한 두꺼운 복합적층판의 불규칙 진동해석(1)-이론적 고찰)

  • Seok, Keun-Yung;Kang, Joo-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.190-196
    • /
    • 2004
  • Thick composite laminated plates is considered in 3D finite-element. To consider continuity of transverse stresses and displacement field, mixed finite-element has been developed by using layerwise theory and the minimum potential energy principle. Mixed finite-element has been enforced through the thick direction, Z, of a laminated plate by considering six degree-of-freedoms per node. Six degree-of-freedoms are three displacement components in the coordinate axes directions and three transverse stress components ${\sigma}_z,\;{\tau}_{xz},\;{\tau}_{yz}$. The model maintain the fundamental elasticity relations that are stress-strain relation and displacement-strain relation, because the transverse stress components invoked as nodal degrees of freedom by using the fundamental elasticity relationship between th components of stress and displacement. Random vibration analysis of the model is performed by computing consistent mass matrix and computing covariance in frequency domain technique.

  • PDF