• 제목/요약/키워드: 3D finite difference method

검색결과 267건 처리시간 0.03초

Jacobian-free Newton Krylov two-node coarse mesh finite difference based on nodal expansion method

  • Zhou, Xiafeng
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3059-3072
    • /
    • 2022
  • A Jacobian-Free Newton Krylov Two-Nodal Coarse Mesh Finite Difference algorithm based on Nodal Expansion Method (NEM_TNCMFD_JFNK) is successfully developed and proposed to solve the three-dimensional (3D) and multi-group reactor physics models. In the NEM_TNCMFD_JFNK method, the efficient JFNK method with the Modified Incomplete LU (MILU) preconditioner is integrated and applied into the discrete systems of the NEM-based two-node CMFD method by constructing the residual functions of only the nodal average fluxes and the eigenvalue. All the nonlinear corrective nodal coupling coefficients are updated on the basis of two-nodal NEM formulation including the discontinuity factor in every few newton steps. All the expansion coefficients and interface currents of the two-node NEM need not be chosen as the solution variables to evaluate the residual functions of the NEM_TNCMFD_JFNK method, therefore, the NEM_TNCMFD_JFNK method can greatly reduce the number of solution variables and the computational cost compared with the JFNK based on the conventional NEM. Finally the NEM_TNCMFD_JFNK code is developed and then analyzed by simulating the representative PWR MOX/UO2 core benchmark, the popular NEACRP 3D core benchmark and the complicated full-core pin-by-pin homogenous core model. Numerical solutions show that the proposed NEM_TNCMFD_JFNK method with the MILU preconditioner has the good numerical accuracy and can obtain higher computational efficiency than the NEM-based two-node CMFD algorithm with the power method in the outer iteration and the Krylov method using the MILU preconditioner in the inner iteration, which indicates the NEM_TNCMFD_JFNK method can serve as a potential and efficient numerical tool for reactor neutron diffusion analysis module in the JFNK-based multiphysics coupling application.

자계-열계 시스템의 3차원 위상최적설계 (3-D Topology Optimization of Magneto-Thermal Systems)

  • 심호경;왕세명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.939-941
    • /
    • 2005
  • This research presents a 3D multi-objective approach regarding both magnetic and thermal characteristics associated with design of C-core actuator. The adjoint variable topology sensitivity equations are derived using the continuum method for three dimension. The sensitivity is verified using the Finite Difference Method(FDM). Convection interpolation function is proposed for density method of topologies such that convection term can be taken into consideration for practical design in the process of the optimization.

  • PDF

Numerical study of turbulent wake flow behind a three-dimensional steep hill

  • Ishihara, Takeshi;Hibi, Kazuki
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.317-328
    • /
    • 2002
  • A numerical investigation on the turbulent flows over a three-dimensional steep hill is presented. The numerical model developed for the present work is based on the finite volume method and the SIMPLE algorithm with a non-staggered grid system. Standard $k-{\varepsilon}$ model and Shih's non-linear model are tested for the validation of the prediction accuracy in the 3D separated flow. Comparisons of the mean velocity and turbulence profiles between the numerical predictions and the measurements show good agreement. The Shih's non-linear model is found to predict mean flow and turbulence better than the Standard $k-{\varepsilon}$. Flow patterns have also been examined to explain the difference in the cavity zone between 2D and 3D hills.

코플래너 웨이브가이드 불연속에 대한 용량성 등가회로 모델링 (Capacitive Equivalent Circuit Modeling for Coplanar Waveguide Discontinuities)

  • 박기동;임영석
    • 한국전자파학회논문지
    • /
    • 제8권5호
    • /
    • pp.486-487
    • /
    • 1997
  • 본 논문은 CPW 불연속 중 개방단, 연결된 접지면을 갖는 개방단, 캡, 개방단 CPW 스터브에 대한 순수 용량 성 집중소자 등가회로를 제시하였으며, 불연속의 불리적 차원과 주파수 함수로써 등가회로의 커패시턴스값을 나 타내었다. 커패시턴스값은 3차원 유한차분 시간영역볍(3D-FDTD)을 적용하여 계산한 주파수 영역 산란 파라미 터로부터 이끌어냈다. 개방단, 연결된 접지변을 갖는 개방단 및 캡 불연속에 대해 FDTD으로 계산한 커패시턴스 값을 3차원 유한 차분볍(3D- FDM)으로 계산한 준정적 결과와 비교하였다.

  • PDF

A Rigorous 2D Approximation Technique for 3D Waveguide Structures for BPM Calculations

  • Han, Young-Tak;Shin, Jung-Uk;Kim, Duk-Jun;Park, Sang-Ho;Park, Yoon-Jung;Sung, Hee-Kyung
    • ETRI Journal
    • /
    • 제25권6호
    • /
    • pp.535-537
    • /
    • 2003
  • We propose a rigorous 2D approximation technique for the 3D waveguide structures; it can minimize the well-known approximation errors of the commonly used effective index method. The main concept of the proposed technique is to compensate for the effective cladding index in the equivalent slab model of the original channel waveguide from the modal effective index calculated by the nonuniform 2D finite difference method. With simulations, we used the proposed technique to calculate the coupling characteristics of a directional coupler by the 2D beam propagation method, and the results were almost exactly the same as the results calculated by the 3D beam propagation method.

  • PDF

U-Slot 패치를 이용한 광대역 안테나의 설계에 관한 연구 (A Study on the Design of Wideband Antenn as using U-Slot Patches)

  • 김원배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권3호
    • /
    • pp.180-185
    • /
    • 2005
  • Microstrip antennas generally have a lot of advantages that are thin profile, lightweight, low cost, and conformability to a shaped surface application with integrated circuitry. In addition to military applications, they have become attractive candidates in a variety of commercial applications such as mobile satellite communications, the direct broadcast system (DBS), global positioning system (GPS), and remote sensing. Recently, many of the researches have been achieved for improving the impedance bandwidth of microstrip antennas. The basic form of the microstrip antenna, consisting of a conducting patch printed on a grounded substrate, has an impedance bandwidth of $1\~2\%$. For improvement of narrow bandwidth of microstrip patch, we were designed U-slot microstrip patch antenna in this paper. This antenna had wide bandwidth for all personal communication services (PCS) and IMT-2000. For the design of U-slot microstrip patch antenna using a finite difference time domain(FDTD) method. This numerical method could get the frequency property of U-slot patch antenna and the electromagnetic fields of slots.

정상파 문제의 방사조건에 관한 연구 (A Study on the Numerical Radiation Condition in the Steady Wave Problem)

  • 이광호;전호환;성창경
    • 한국해양공학회지
    • /
    • 제12권2호통권28호
    • /
    • pp.97-110
    • /
    • 1998
  • The numerical damping and dispersion error characteristics associated with difference schemes and a panel shift method used for the calculation of steady free surface flows by a panel method are an analysed in this paper. First, 12 finite difference operators used for the double model flow by Letcher are applied to a two dimensional cylinder with the Kelvin free surface condition and the numerical errors with these schemes are compared with those by the panel shift method. Then, 3-D waves due to a submerged source are calculated by the difference schemes, the panel shift method and also by a higher order boundary element method(HOBEM). Finally, the waves and wave resistance for Wigley's hull are calculated with these three schemes. It is shown that the panel shift method is free of numerical damping and dispersion error and performs better than the difference schemes. However, it can be concluded that the HOBEM also free of the numerical damping and dispersion error is the most stable, accurate and efficient.

  • PDF

Numerical investigation of segmental tunnel linings-comparison between the hyperstatic reaction method and a 3D numerical model

  • Do, Ngoc Anh;Dias, Daniel;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • 제14권3호
    • /
    • pp.293-299
    • /
    • 2018
  • This paper has the aim of estimating the applicability of a numerical approach to the Hyperstatic Reaction Method (HRM) for the analysis of segmental tunnel linings. For this purpose, a simplified three-dimensional (3D) numerical model, using the $FLAC^{3D}$ finite difference software, has been developed, which allows analysing in a rigorous way the effect of the lining segmentation on the overall behaviour of the lining. Comparisons between the results obtained with the HRM and those determined by means of the simplified 3D numerical model show that the proposed HRM method can be used to investigate the behaviour of a segmental tunnel lining.

Evaluating effects of various water levels on long-term creep and earthquake performance of masonry arch bridges using finite difference method

  • Cavuslu, Murat
    • Geomechanics and Engineering
    • /
    • 제31권1호
    • /
    • pp.31-52
    • /
    • 2022
  • Investigating and evaluating the long-term creep behavior of historical buildings built on seismic zones is of great importance in terms of transferring these structures to future generations. Furthermore, assessing the earthquake behavior of historical structures such as masonry stone bridges is very important for the future and seismic safety of these structures. For this reason, in this study, earthquake analyses of a masonry stone bridge are carried out considering strong ground motions and various water levels. Tokatli masonry stone arch bridge that was built in the 10th century in Turkey-Karabük is selected for three-dimensional (3D) finite difference analyses and this bridge is modeled using FLAC3D software based on the three-dimensional finite difference method. Firstly, each stone element of the bridge is modeled separately and special stiffness parameters are defined between each stone element. Thanks to these parameters, the interaction conditions between each stone element are provided. Then, the Burger-Creep and Drucker-Prager material models are defined to arch material, rockfill material for evaluating the creep and seismic failure behaviors of the bridge. Besides, the boundaries of the 3D model of the bridge are modeled by considering the free-field and quiet boundary conditions, which were not considered in the past for the seismic behavior of masonry bridges. The bridge is analyzed for 6 different water levels and these water levels are 0 m, 30 m, 60 m, 70 m, 80 m, and 90 m, respectively. A total of 10 different seismic analyzes are performed and according to the seismic analysis results, it is concluded that historical stone bridges exhibit different seismic behaviors under different water levels. Moreover, it is openly seen that the water level is of great importance in terms of earthquake safety of historical stone bridges built in earthquake zones. For this reason, it is strongly recommended to consider the water levels while strengthening and analyzing the historical stone bridges.

유한차분법을 이용한 3차원 지진파 전파 모의 (Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method)

  • 강태섭
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF