• Title/Summary/Keyword: 3D fiber structure

Search Result 149, Processing Time 0.028 seconds

Effect of Post-processing on Mechanical Properties of 3D Printed Carbon Chopped Fiber Reinforced Composites (3D 프린팅 된 탄소 단섬유강화 복합재료의 후처리 효과가 재료의 기계적 성능에 미치는 영향)

  • Jia-le, Che;Seung-Hwan, Chang
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.463-468
    • /
    • 2022
  • The high porosity of the infill pattern of carbon chopped fiber-reinforced Nylon composite structures fabricated by the fused filament fabrication (FFF) type 3D printers determines the mechanical performance of the printed structures. This study experimentally evaluated the mechanical performance of Onyx composite specimens fabricated with a rectangular infill structure under the hot-pressing condition to improve the mechanical properties by reducing the porosity of the infill pattern of the printed structure, and evaluated the best mechanical performance. The hot-pressing conditions (145℃, 4 MPa, 12 min) that induce the most appropriate mechanical properties were found. As a result of microscopic observation, it was confirmed that the infill porosity of the composite specimens subjected to post hot-pressing treatment was effectively reduced. In order to confirm the mechanical performance of the post-treated specimen, a tensile test and a three-point bending test were performed with a control specimen without post-treatment and a specimen printed with the same density and dimensions after post-treatment to evaluate the mechanical properties. As a result of comparison, it was confirmed that the mechanical properties were effectively improved when the post-treatment of hot-pressing was performed.

Structural Changes during Oxidation Process of Anisotopic Mesophase Carbon fibers(I) - TEM and XRD Study (산화반응에 의한 이방성 메조페이스 탄소섬유의 구조 변화(I) - TEM 및 XRD를 이용한 분석)

  • Roh, J.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.825-830
    • /
    • 2003
  • Structural changes during oxidation of anisotopic mesophase carbon fiber(AMCFs) have been observed with TEM and XRD. It was shown that the AMCFs are three dimensionally stacked structure of turbostratic layers, and are non-homogeneous structure which consist of the highly ordered areas and the random areas. The $d_{ 002}$, Lc, and La of AMCFs which were measured by XRD were 3.44, 146, and $135\AA$, respectively. It was observed that the oxidation initiated at the random areas, because the $d_{002}$ / decreased to the value of 3.41 $\AA$ during initial oxidation stage. It was also observed that the La of the oxidized AMCFs increased up to 182 $\AA$ during the whole oxidation process, and the $d_{002}$ of that increases up to 9.44 $\AA$ when the burn-off is over the degree of 20%. Therefore, it was suggested that the micro-crystalline grew up by heat treatment effects during the fibers were oxidized, In addition, it was shown that there was difference in the measured value of La by XRD and TEM, in case of 39% oxidized fibers for example, the measured La was $ 165\AA$ by XRD and in the range of 180∼220 $\AA$ by TEM.

Damage and stiffness research on steel shape steel fiber reinforced concrete composite beams

  • Xu, Chao;Wu, Kai;Cao, Ping zhou;Lin, Shi qi;Xu, Teng fei
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.513-525
    • /
    • 2019
  • In this work, an experimental research has been performed on Steel Fiber-Steel Reinforced Concrete (SFSRC)specimens subjected to four-point bending tests to evaluate the feasibility of mutual replacement of steel fibers and conventional reinforcement through studying failure modes, load-deflection curves, stiffness of characteristic points, stiffness degradation curves and damage analysis. The variables considered in this experiment included steel fiber volume percentage with and without conventional reinforcements (stirrups or steel fibers) with shear span depth ratios of S/D=2.5 and 3.5. Experimental results revealed that increasing the volume percentage of steel fiber decreased the creation and propagation of shear and bond cracks, just like shortening the stirrups spacing. Higher crack resistance and suturing ability of steel fiber can improve the stability of its bearing capacity. Both steel fibers and stirrups improved the stiffness and damage resistance of specimens where stirrups played an essential role and therefore, the influence of steel fibers was greatly weakened. Increasing S/D ratio also weakened the effect of steel fibers. An equation was derived to calculate the bending stiffness of SFSRC specimens, which was used to determine mid span deflection; the accuracy of the proposed equation was proved by comparing predicted and experimental results.

Preparation of Regenerated Cellulose Fiber via Carbonation (II) - Spinning and Characterization -

  • Oh Sang Youn;Yoo Dong Il;Shin Younsook;Kim Hak Yong;Kim Hwan Chul;Chung Yong Sik;Park Won Ho;Youk Ji Ho
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • Sodium cellulose carbonate (CC-Na) dissolved in $8.5\;wt\%$ NaOH/ZnO (100/2-3, w/w) aqueous solution was spun into some acidic coagulant systems. Diameter of regenerated cellulose fibers obtained was in the range of $15-50\;{\mu}m$. Serrated or circular cross sectional views were obtained by controlling salt concentration or acidity in the acid/salt/water coagulant systems. Velocity ratio of take-up to spinning was controlled up to 4/1 with increasing spinning velocity from 5 to 40 m/min. Skin structure of was developed at lower acidity or higher concentration of coagulants. Fineness, tenacity and elongation of the regenerated cellulose fibers were in the range of 1.5-27 denier, 1.2-2.2 g/d, and $8-11.3\;\%$, respectively. All of CC-Na and cellulose fibers spun from CC-Na exhibited cellulose II crystalline structure. Crystallinity index was increased with increasing take-up speed.

Structural Optimization of 3D Printed Composite Flight Control Surface according to Diverse Topology Shapes (다양한 위상 형상에 따른 3D 프린트 복합재료 조종면의 구조 최적화)

  • Myeong-Kyu Kim;Nam Seo Goo;Hyoung-Seock Seo
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2023
  • When designing ships and aircraft structures, it is important to design them to satisfy weight reduction and strength. Currently, studies related to topology optimization using 3D printed composite materials are being actively conducted to satisfy the weight reduction and strength of the structure. In this study, structural analysis was performed to analyze the applicability of 3D printed composite materials to the flight control surface, one of the parts of an aircraft or unmanned aerial vehicle. The optimal topology shape of the flight control surface for the bending load was analyzed by considering three types (hexagonal, rectangular, triangular) of the topology shape of the flight control surface. In addition, the bending strength of the flight control surface was analyzed when four types of reinforcing materials (carbon fiber, glass fiber, high-strength high-temperature glass fiber, and kevlar) of the 3D printed composite material were applied. As a result of comparing the three-point bending test results with the finite element method results, it was confirmed that the flight control surface with hexagonal topology shape made of carbon fiber and Kevlar had excellent performance. And it is judged that the 3D printed composite can be sufficiently applied to the flight control surface.

Influence of Preparation Conditions on the Formation of Copper (II) Architectures with Pyrazine-2,3,5-tricarboxylic Acid

  • Wang, Feng-Qin;Lin, Shu;Guo, Ming-Lin;Xu, Jun-Jian;Wang, Xiao-Qing;Zhao, Yong-Nan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2351-2357
    • /
    • 2011
  • Three new metal-organic copper(II) complexes, $[Cu(H_2PZTC)_2]_n{\cdot}2nH_2O$ (1), $[Cu(HPZTC){\cdot}2H_2O]_n{\cdot}2nH_2O$ (2), and $Cu_2[(PZHD)(OH)(H_2O)_2]_n$ (3) ($H_3PZTC$ = pyrazine-2,3,5-tricarboxylic acid, $PZHD^{3-}$ = 2-hydroxypyrazine-3,5-dicarboxylate), have been synthesized from $Cu(II)/H_3PZTC$ system under different synthetic conditions, and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy and thermogravimetric analysis. In complexes 1 and 2, $H_3PZTC$ ligands loose one and two protons, which were transformed into $H_2PZTC^-$ anion and $HPZTC^{2-}$ dianion under different preparation condition, respectively. Furthermore, two ligands coordinate with Cu(II) cations in different modes, leading to the formation of the different chain structures. In complex 3, $H_3PZTC$ ligand was converted into a new ligand-PZHD by in situ decarboxylation and hydroxylation under a higher pH value than that for complexes 1 and 2. PZHD ligands link the Cu(II) cations to form a 2D layer structure. These results demonstrate that the preparation conditions, including pH value and reaction temperature etc, play an important role in the construction of complexes based on $H_3PZTC$ ligand.

A Low-Crosstalk Design of 1.25 Gbps Optical Triplexer Module for FTTH Systems

  • Kim, Sung-Il;Park, Sun-Tak;Moon, Jong-Tae;Lee, Hai-Young
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • In this paper, we analyzed and measured the electrical crosstalk characteristics of a 1.25 Gbps triplexer module for Ethernet passive optical networks to realize fiber-tothe-home services. Electrical crosstalk characteristic of the 1.25 Gbps optical triplexer module on a resistive silicon substrate should be more serious than on a dielectric substrate. Consequently, using the finite element method, we analyze the electrical crosstalk phenomena and propose a silicon substrate structure with a dummy ground line that is the simplest low-crosstalk layout configuration in the 1.25 Gbps optical triplexer module. The triplexer module consists of a laser diode as a transmitter, a digital photodetector as a digital data receiver, and an analog photodetector as a cable television signal receiver. According to IEEE 802.3ah and ITU-T G.983.3, the digital receiver and analog receiver sensitivities have to meet -24 dBm at $BER=10^{-12}$ and -7.7 dBm at 44 dB SNR. The electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysis and measurement results, the proposed silicon substrate structure that contains the dummy line with $100\;{\mu}m$ space from the signal lines and 4 mm separations among the devices satisfies the electrical crosstalk level compared to a simple structure. This proposed structure can be easily implemented with design convenience and greatly reduce the silicon substrate size by about 50 %.

  • PDF

Mode Size Converter based on Muitimode Fiber Taper (다중모드 광섬유 테이퍼를 이용한 모드 크기 변환기)

  • Kim, Kwang-Taek;Park, Kiu-Ha;Hyun, Woong-Keun;Jung, Yong-Min;Lee, Byeong-Ha
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.280-285
    • /
    • 2007
  • Based on the multimode fiber taper, a mode size converter for effective optical beam coupling between laser and optical fiber or between the two different optical fibers has been proposed and demonstrated. The device has a multimode input end and a single mode output end. The influence of various parameters, including device structure and launching conditions, on the coupling efficiency has been theoretically analyzed. The theoretical results revealed that the gaussian beam can be coupled into a single mode fiber without considerable insertion loss. The proposed multimode fiber taper has been fabricated using heating and pulling equipment incorporating two micro-torches. Experimental results showed that an optical beam with $50\;{\mu}m$ of large beam size was effectively coupled into single mode fiber through the multimode fiber taper. The insertion loss of the device was 1.3 dB.

Energy Absorption Mechanism of Glass/Epoxy 3-D braided structure in Low Velocity Impact Test (유리/에폭시 3차원 브레이드 복합재료의 저속 충격 에너지 흡수기구)

  • Joo Ki Ho;Sul In Hwan;Kim Soo Chang;Kang Tae Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.167-170
    • /
    • 2004
  • In order to investigate the impact behaviors of 3-D braided glass/epoxy composites, the energy profiles and damage area were compared to the laminates of similar volume fraction and composition. The energy profiles showed different characteristics from each other which indicates they have distict energy absorption mechanisms. The image analysis on the damage projections visualized the crack propagation paths along the fiber direction.

  • PDF

Structure analysis and signal process to improve distance measuring accuracy of 3D laser scanner (3차원 레이저스캐너의 거리측정 정밀도 향상을 위한 시스템의 구조분석과 신호처리)

  • Oh, Dong-Geun;Yoo, Hyun-Kuk;Kim, Ho-Seop
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.245-247
    • /
    • 2010
  • This research presents both system structure analysis to improve performance of 3D laser scanner, which has time of flight method, and scheme to minimize distance measurement errors during signal process. With the help of reference source, we minimized the instability of electronic signal processing time and possibility of distance measurement errors. Furthermore, it helps easy alignment and accuracy of system by using fiber delay line and coupler.

  • PDF