• 제목/요약/키워드: 3D fiber matrix

검색결과 76건 처리시간 0.026초

Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system

  • Zhou, Changlin;Zhao, Yi;Zhang, Ji;Fang, Yuan;Habibi, Mostafa
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.295-307
    • /
    • 2020
  • The vibrational characteristics of Multi-Phase Nanocomposite (MPC) reinforced annular/circular plate under initially stresses are presented using the state-space formulation based on three-dimensional elasticity theory (3D-elasticity theory) and Differential Quadrature Method (DQM). The MPC reinforced annular/circular plate is under initial lateral stress and composed of multilayers with Carbon Nanotubes (CNTs) uniformly dispersed in each layer, but its properties change layer-by-layer along the thickness direction. The State-Space based Differential Quadrature Method (SS-DQM) is presented to examine the frequency behavior of the current structure. Halpin-Tsai equations and fiber micromechanics are used in the hierarchy to predict the bulk material properties of the multi-scale composite. A singular point is investigated for modeling the circular plate. The CNTs are supposed to be randomly oriented and uniformly distributed through the matrix of epoxy resin. Afterward, a parametric study is done to present the effects of various types of sandwich circular/annular plates on frequency characteristics of the MPC reinforced annular/circular plate using 3D-elasticity theory.

FRP 복합재료의 온도변화 및 제작인자별 비선형 전단거동 조사 (An Investigation on the Nonlinear Shear Behavior of FRP Composites Considering Temperature Variation and Fabricating Parameters)

  • 정우영;황진섭
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.833-841
    • /
    • 2013
  • 복합재료의 경우 다양한 재료에 따라 제작이 가능하며 이들 완성재료의 경우 다양한 재료특성을 나타낸다. 이 연구는 건설용 FRP복합재료의 재료특성 중 선형거동이 뚜렷이 나타나는 인장, 압축과는 달리 비선형 거동이 발생되는 전단거동 특성에 대한 실험적 연구로서 ASTM D4255 규정에 의한 2-Rail 전단시험 방법을 토대로 각각의 시편들을 제작, 실험결과를 분석하였다. 고려된 실험변수로는 함침 수지류의 종류와 섬유 체적비, 섬유배열 방향 및 온도 특성, 공장용 생산제품의 균질성 등을 고려하였다. 섬유배열 방향에 따른 특성조사의 경우 섬유 배열방향을 $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$로 각각 시편을 제작하였으며, 온도에 따른 외부환경 변화에 의한 FRP재료의 전단거동을 조사하기 위하여 실험온도를 $25^{\circ}C$, $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$로 각각 고려하여 시험을 수행하였다. 이 연구를 통하여 대부분의 복합재료 시편에서 비선형 전단거동이 확인되었으며 비닐에스테르수지를 사용하고, 높은 섬유체적비와 $45^{\circ}$의 섬유배열방향을 가진 시편에서 비선형 전단거동이 가장 두드러지게 나타나는 것으로 조사되었다. 온도변화에 따른 실험결과의 경우, 온도가 증가함에 따라 전단 내 비선형 거동의 감소가 나타났으며 공장용 제작제품의 경우 hand lay-up 제작시편에 비하여 비선형 전단거동이 비교적 동등하게 나타냈다.

Changes in Hydrophobic Surface of Collagen by Chondroitin Sulfate : Fluorescence Intensity Measurements with Bis-ANS as the Probe

  • Kim, Sung-Koo
    • 한국식품영양과학회지
    • /
    • 제24권3호
    • /
    • pp.446-453
    • /
    • 1995
  • The improtant components of extracellular matrix(ECM) are collagen and chondroitin sulfate. The hydrophobic surface of collagen is one of the determining factors of diameter of collagen fiber and also is closely related to the aging phenomena. The controlling mechanism of the diameter of collagen fiber influenced by the interaction with chondroitin sulfate was evaluated using bis-ANS as a hydrophobic probe. Hydrophobic surface area of collagen molecule shielded by chondroitin sulfate was evaluated. Relative fluorescence intensity of collagen in thepresence of chondroitin sulfate was measured using bis-ANS as a hydrophobic probe. The fluorescence intensity decreased with the increase in chondroitin sulfate up to 3.8 chondroitin sulfate/collagen(mole/mole). Further increase in the ratio of chondroitin sulfate to collagen did not change the fluorescence intensity. Similar changes in the relative fluorescence intensity were observed for both rat tail and lathyrific rat skin collagen. The fluorescence intensity indicated by the binding between bis-ANS and hydrophobic sites of collagen was pH dependent, and the shielding effect of collagen-chondroitin sulfate interaction could not be detected at pH above 6.0. This is probably due to the charge repulsions caused by negative charged collagen molecules at higher pH.

  • PDF

3D Hierarchical Flower-Like Cobalt Ferrite Nanoclusters-Decorated Cotton Carbon Fiber anode with Improved Lithium Storage Performance

  • Meng, Yanshuang;Cheng, Yulong;Ke, Xinyou;Ren, Guofeng;Zhu, Fuliang
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.285-295
    • /
    • 2021
  • The inverse spinel Cobalt ferrite (CoFe2O4, CFO) is considered to be a promising alternative to commercial graphite anodes for lithium ion batteries (LIBs). However, the further development of CFO is limited by its unstable structure during battery cycling and low electrical conductivity. In an effort to address the challenge, we construct three-dimensional hierarchical flower-like CFO nanoclusters (CFO NCs)-decorated carbonized cotton carbon fiber (CFO NCs/CCF) composite. This structure is consisted of microfibers and nanoflower cluster composited of CFO nanoparticle, in which CCF can be used as a long-range conductive matrix, while flower-like CFO NCs can provide abundant active sites, large electrode/electrolyte interface, short lithium ion diffusion path, and alleviated structural stress. As anode materials in LIBs, the flower-like CFO NCs/CCF exhibits excellent electrochemical performance. After 100 cycles at a current density of 0.3 A g-1, the CFO NCs/CCF delivers a discharge/charge capacity of 1008/990 mAh g-1. Even at a high current density of 15 A g-1, it still maintains a charge/discharge capacity of 362/361 mAh g-1.

2차원 X-밴드 위상 배열 안테나용 광 실시간 지연선로 (An Optical True Time-Delay for Two-Dimensional X-Band Phased Array Antennas)

  • 정병민;김성철;신종덕;김부균
    • 한국광학회지
    • /
    • 제16권3호
    • /
    • pp.287-294
    • /
    • 2005
  • 본 논문에서는 크로스(CROSS) 포트에 광섬유 지연선로가 연결된 $2\times2$ 광 스위치들로 구성된 광섬유 지연선로 행렬과 다파장 광원을 이용한 2차원 위상 배열 안테나(Phased Array Antenna; PAA)용 광 실시간 지연선로(True Time-Delay ; TTD)의 구조를 제안하였고, 파장 의존형 광 TTD와 파장 비의존형 광 TTD를 결합하여 10-GHz 2차원 PAA용 2-비트$\times$4-비트 광 TTD를 제작하였다. 단위 시간 지연 차이가 각각 ${\Delta}T=12ps$$\Delta\tau=6ps$인 파장 의존형 광 TTD와 파장 비의존형 광 TTD의 모든 주사각에 대해서 시간지연을 측정하였다. 파장 의존형 광 TTD의 시간 지연 오차는 지터에 의해 최대 2.8 ps가 발생하였으며, 파장 비의존형 광 TTD의 경우에는 ${\pm}0.8ps$이하의 오차가 나타났다. 제안된 2차원 PAA용 광 TTD의 구조는 1차원 선형 PAA보다 높은 이득을 얻을 수 있고, 다파장 광원을 사용하므로 광 파워 및 파장의 안정성을 확보할 수 있으며, 전기적 스위치 제어기를 이용하여 $2\times2$ 광 스위치 행렬을 열(column) 단위로 절체하기 때문에 주사 빔 제어 속도가 빠르고 구동이 간단한 장점을 갖고 있다.

축압축을 받는 CFRP 적층부재의 에너지흡수특성과 파괴모드에 관한 연구 (A Study on the Energy Absorption Characteristics and Fracture Mode of CFRP Laminate Members under Axial Compression)

  • 김정호;정회범;전형주
    • 한국안전학회지
    • /
    • 제17권3호
    • /
    • pp.7-12
    • /
    • 2002
  • The object of this paper is to investigate collapse characteristics of CF/Epoxy(Carbon Fiber/Epoxy resin) composite tubes on the change of interlaminar number and fiber orientation angle of outer and to evaluate reappearance of collapse characteristics on the change of tension strength of fibers under static and impact axial compression loads. When a CF/Epoxy composite tube is mushed, static/impact energy is consumed by friction between the loading plate and the splayed fiends of the tube, by fracture of the fibers, matrix and their interface. In general, CF/Epoxy tube with 6 interlaminar number(C-type) absorbed more energy than other tubes(A, B, D-types). The maximum collapse load seemed to increase as the interlaminar number of such tubes increases. The collapse mode depended upon orientation angle of outer of CF/Epoxy tubes and loading status(static/impact). Typical collapse modes of CF/Epoxy tubes are wedge collapse mode, splaying collapse mode and fragmentation collapse mode. The wedge collapse mode was shorn in case of CF/Epoxy tubes with 0$^{\circ}$ orientation angle of outer under static and impact loadings. The splaying collapse mode was shown in only case of CF/Epoxy tubes with 90$^{\circ}$ orientation angie or outer under static loadings, however in impact tests those were collapsed in fragmentation mode. So that CF/Epoxy tube with 6 interlaminar number and 90$^{\circ}$ outer orientation angle presented to the optimal collapse characteristics.

산화억제제를 첨가한 탄소/탄소 복합재료의 물성에 관한 연구 : 8. TEOS를 함유한 복합재료의 열분해 메카니즘 및 열안정성 연구 (Influence of Oxidation Inhibitor on Carbon-Carbon Composites : 8. Studies on Thermal Decomposition Mechanism and Thermal Stability of Composites Impregnated with TEOS)

  • 박수진;서민강;이재락
    • 폴리머
    • /
    • 제25권6호
    • /
    • pp.866-875
    • /
    • 2001
  • 본 연구에서는 고온 산화분위기 하에서 탄소/탄소 복합재료의 열적 향상을 위해 사용된 tetraethylorthosilicate(TEOS)의 첨가량에 따른 복합재료의 kinetic parameter에 기초한 열분해 메카니즘 및 열안정성을 열중량분석기(TGA)를 사용하여 고찰하였다 TEOS를 함유한 탄소/탄소 복합재료의 kinetic parameter, 즉 열분해 활성화 에너지 ($E_d$), 반응차수(n), 지수앞 인자 (A)는 각각 136 kJ/mol, 0차, 및 2.3$\times$$10^9s^{-1}$을 나타내었으며, 특히 IPDT 및 $E_d$로부터 살펴본 복합재료의 열안정성은 탄소/탄소 복합재료에 TEOS가 첨가되면 크게 향상되었는데, 이는 산소에 대한 산화방지막, 즉 $SiO_2$의 형성으로 인한 복합재료 표면에서의 카본 활성종에 산소의 침투를 방해하여 TEOS를 함유한 복합재료가 이를 함유하지 않은 것에 비하여 표면 산화 속도가 감소되어 열안정성이 증가하였다고 사료된다.

  • PDF

A new 3D interface element for three dimensional finite element analysis of FRP strengthened RC beams

  • Kohnehpooshi, O.;Noorzaei, J.;Jaafar, M.S.;Saifulnaz, M.R.R.
    • Interaction and multiscale mechanics
    • /
    • 제4권4호
    • /
    • pp.257-271
    • /
    • 2011
  • The analysis of interfacial stresses in structural component has been the subject of several investigations but it still requires more effort and studies. In this study a general three-dimensional interface element has been formulated for stress and displacement analyses in the interfacial area between two adjacent plate bending element and brick element. Interface element has 16 nodes with 5 degrees of freedom (DOF) in each node adjacent to plate bending element and 3 DOF in each node adjacent to brick element. The interface element has ability to transfer three translations from each side of interface element and two rotations in the side adjacent to the plate element. Stiffness matrix of this element was formulated and implemented in three-dimensional finite element code. Application of this element to the reinforced concrete (RC) beam strengthened with fiber reinforced polymer (FRP) including variation of deflection, slip between plate and concrete, normal and shear stresses distributions in FRP plates have been verified using experimental and numerical work of strengthened RC beams carried out by some researchers. The results show that this interface element is effective and can be used for structural component with these types of interface elements.

자동차 타이로드 엔드 부품의 경량화에 관한 연구 (A Study of Light Weight of Tie Rod End in Auto Supplies)

  • 김영수;김인관;탁정호;김대식
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.70-75
    • /
    • 1999
  • This study is for the development of tie rod end, a parts of steering system, that would be changed with plastic material. The position of weld line is founded by the analysis of Mold Flow, computer software with FEM(Finite Element Method). Then new mold is designed by consideration with the locations of weld line. PA66(G/F 35%), PA6(G/F 45%), PET(G/F 45%) and PET(G/F 55%) are tested two types loading conditions for selecting suitable material, the requirement tensile load(more 19600N). PA6(G/F 45%) showed high mechanical properties in this study. And then, tensile strength was compared between conventional metal products and the injection molded products which were reinforced with 33%, 34%, 45%. 60% of glass fiber in matrix material. In the case of, the measured two types of tensile load values are 24500N (Method-1), 21560N (Method-2) and weight is decreased by 50% of conventional one.

  • PDF

High-cycle fatigue characteristics of quasi-isotropic CFRP laminates

  • Hosoi, Atsushi;Arao, Yoshihiko;Karasawa, Hirokazu;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • 제16권2호
    • /
    • pp.151-166
    • /
    • 2007
  • High-cycle fatigue characteristics of quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates [-45/0/45/90]s up to $10^8$ cycles were investigated. To assess the fatigue behavior in the high-cycle region, fatigue tests were conducted at a frequency of 100 Hz, since it is difficult to investigate the fatigue characteristics in high-cycle at 5 Hz. Then, the damage behavior of the specimen was observed with a microscope, soft X-ray photography and a 3D ultrasonic inspection system. In this study, to evaluate quantitative characteristics of both transverse crack propagation and delamination growth in the high-cycle region, the energy release rate associated with damage growth in the width direction was calculated. Transverse crack propagation and delamination growth in the width direction were evaluated based on a modified Paris law approach. The results revealed that transverse crack propagation delayed under the test conditions of less than ${\sigma}_{max}/{\sigma}_b$ = 0.3 of the applied stress level.