• Title/Summary/Keyword: 3D fabric design

Search Result 82, Processing Time 0.027 seconds

Simulation Technology of 3D Fabrics (3차원 입체 직물의 시뮬레이션 기술)

  • Park, Jung Hyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.214-224
    • /
    • 2019
  • This investigation reported the simulation technologies to design the 3-dimensional fabrics such as 3 dimensional multi-layered fabric, 3 dimensional braided fabric and spacer fabric. The simulation system or software has been actively used to develop products of 3 dimensional fabric which can be reduced development costs and time. Thus, many countries such as Japan, Germany, China, and U.K. show great interests on simulation technologies for developing new materials and processes including 3 dimensional fabric field. In this study, simulation systems have been reviewed for the 3 dimensional fabric design system from Mikawa Textile Research Center, Japan; ProCad and ProFab from Karl Mayer and Texion, Germany; xComposites from China; TexGen from Nottingham University, U.K.; TexPro from Young Woo CnI, Korea, respectively.

Research on Aesthetic Characteristics of Fabric Expression Technique of Art to Wear - Focusing on Art to Wear artists in the U.S.A. -

  • Jin, Kyung-Ok
    • Journal of Fashion Business
    • /
    • v.11 no.3
    • /
    • pp.133-151
    • /
    • 2007
  • The role of fabric now directly related with the expression of the beauty of clothing and it provides new and creative ideas. This study was aimed at reviewing basic data that can be used in systematic design development through fabric expression for today's fashion designers who must study unique, original fashion design development. For systematic development of design technique through fabric expression, fabric expression methods and characteristics, aesthetic characteristics and fabric design of 'art to wear' were reviewed and the results are as follows. First, the highly wrought fabric expression of art to wear was confirmed to be comprehending a message within itself. Second, aesthetic characteristics of fabric expression used in art to wear can be classified as decorativeness, extensity, 2-D pictorialness, handicraft, compounding and rearrangement, and 3-D characteristics. Third, the 6 aesthetic characteristics have unique design features and aesthetic categories. The understanding the fabric expression techniques through study on the classification of the fabric expression in 'art to wear' is expected to be extended to proposition of creative direction and inspiration of modern fashion.

Study on the Textile Structural Design using SLS 3D Printing Technology -Focused on Design of Flexible Woven Fabric Structure- (SLS 방식의 3D 프린팅 기술을 활용한 직물구조적인 디자인설계 연구 -유연성 있는 직조구조 직물설계를 중심으로-)

  • Song, HaYoung
    • Journal of Fashion Business
    • /
    • v.23 no.3
    • /
    • pp.67-84
    • /
    • 2019
  • Since the early 2000s, various fashion design products that use 3D printing technology have constantly been introduced to the fashion industry. However, given the nature of 3D printing technology, the flexible characteristics of material of textile fabrics is yet to be achieved. The aim of this study is to develop the optimal design conditions for production of flexible and elastic 3D printing fabric structure based on plain weave, which is the basic structure in fabric weaving using SLS 3D printing technology. As a the result this study aims to utilize appropriate design conditions as basic data for future study of flexible fashion product design such as textile material. Weaving structural design using 3D printing is based on the basic plain weave, and the warp & weft thickness of 4mm, 3mm, 2mm, 1.5mm, 1mm, and 0.7mm as expressed in Rhino 6.0 CAD software program for making a 3D model of size $1800mm{\times}180mm$ each. The completed 3D digital design work was then applied to the EOS SLS Machine through Maker ware, a program for 3D printer output, using polyamide 12 material which has a rigid durability strength, and the final results obtained through bending flexibility tests. In conclusion, when designing the fabric structure design in 3D printing using SLS method through application of polyamide 12 material, the thickness of 1 mm presented the optimal condition in order to design a durable digital textile structure with flexibility and elasticity of the 3D printing result.

Textile Structural Design with Fabric Flexibility using SLS 3D Printing Technology (SLS 3D 프린팅 기술을 적용한 직물 유연성이 발현된 직물구조적인 설계디자인)

  • Song, HaYoung
    • Journal of Fashion Business
    • /
    • v.24 no.3
    • /
    • pp.85-100
    • /
    • 2020
  • Recently, 3D printing technology, which is suitable for small-volume production of many varieties, has become considered a key manufacturing technology in the 4th industrial revolution. However, the nature of 3D printing technology means it is not yet able to be applied to traditional textiles due to Fabric Flexibility. The aim of this study is to investigate Textile Structural Design by finding the optimal yarn thickness for Selective Laser Sintering (SLS) 3D printed structures on geogrid dobby woven fabric that gives the optimal flexibility and tensile strength in the final product. The test results for tensile load strength of the 3D printed test samples, using 1.0mm, 0.8mm, 0.6mm and 0.4mm yarn thicknesses, showed that all were found to be above 250N, this higher than the tensile strength of 180N that is recommended for textile products. Based on these results, the four dobby structural patterns with 3D printing produced had four yarn thicknesses: 1.0mm, 0.8mm, 0.6mm, and 0.4mm. The thinner the yarn, the more flexible the fabric; as such the optimal conditions to produce SLS-based 3D printed textiles with suitable strength and flexibility used a thickness of yarn in the range of 0.4mm to 0.6mm.

A Study of Fashion Design Applying a 3D Print Polymer-Fabric Structure (3DP 폴리머-패브릭(3D Print Polymer-Fabric Structure)을 적용한 패션디자인 연구)

  • Soyung Im;Jaehoon Chun
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.139-152
    • /
    • 2023
  • Despite efforts to apply 3D print (3DP) technology in the field of fashion and endless discussions about the possibility of future development, in reality, it is difficult to utilize 3DP technology in fashion for reasons related to material, technology, and cost constraints. The purpose of this study was to supplement the limitations of 3DP technology in order to promote its utilization in fashion and simultaneously find a solution to achieve aesthetic satisfaction in the design method. Specifically, through the development of fashion products with a 3DP polymer-fabric structure to which the parametric design methodology has been applied, this study explored the possibility of practical application and proposes a new 3DP fashion design method. The 3DP polymer-fabric developed as a result of the research was stably adhered to the fabric. Additionally, the study confirmed the possibility of making 3DP clothes that are amenable to the wearer's activities, as it was verified that cutting and sewing tailored to the human body's curvature and structure can be performed. The design process using the 3DP polymer-fabric presented in this study is meaningful in that it suggests a solution to complement the limitations of modern technology in connection with designers' creativity. Moreover, the design process presented in this study is expected to contribute to the commercialization and generalization of 3DP by providing practical help to allow fashion experts to utilize 3DP technology.

A Study on the Application of 3D Digital Animation Model for Fashion Design I (3D 디지털 애니메이션 모델을 활용한 의상 시뮬레이션에 관한 연구 I)

  • 김혜영
    • Journal of the Korean Society of Costume
    • /
    • v.50 no.2
    • /
    • pp.97-109
    • /
    • 2000
  • The purpose of this study is to apply 3D computer graphics in fashion design as a creative medium and it attempts to fine out what advantages 3D technique can offer to fashion design. For this purpose, this study, first, tries to develop a 3D digital model in which designer can select design, color , pattern and fabric palette whatever necessary . This study uses of the software named 'Poser of Fractal Design' and the and the 3D digital model comprises four stages ; body modeling, item design (item coordination), color design (color coordination), pattern and fabric design (pattern and fabric coordination). Secondly, this study seeks to accumulate a data base which was produced in the course of case studies, which have applied 3D digital model to design. The outcome of the case studies shows that 3D digital model can enhance designing in the following four aspects. ⅰ) It can give more freedom to designer to try various ideas, revise and modify them, It can also produce random generation. Through this process, the designer test various input and output without damage on fabric after revision and alteration. ⅱ) It can help designers to enhance their accuracy. Since fault in the design developed by the 3D digital model can be detected in advance, designers can make correlation before actual work begins. In the end, designers can express their ideas and intention accurately as well as freely. ⅲ) Since design developed by the 3D digital model can be shared on screen by various actors in the course of priduction such designers , merchandisers, and supervisors, it can help communication between and cut the time of feedback.ⅳ) By using the 3D digital model, designers can work from the begining with awareness of actual outcome their design, since the 3D digital model provide animation, which helps designers to envisage visual changes as they apply various items, colors, pattern and fabrics.

  • PDF

Technical Design of Tight Upper Sportswear based on 3D Scanning Technology and Stretch Property of Knitted Fabric (3차원 스캔 기술과 니트 소재의 신축성을 적용한 밀착형 스포츠웨어 상의 설계)

  • Kim, Tae-Gyou;Park, Soon-Jee;Park, Jung-Whan;Suh, Chu-Yeon;Choi, Sin-Ae
    • Fashion & Textile Research Journal
    • /
    • v.14 no.2
    • /
    • pp.277-285
    • /
    • 2012
  • This research studied how to develop tight upper sportswear from 3D scan data considering fabric stretch property. Subjects were five Korean men of average figure in their 20's. Scanning was done for ten postures via vitus smart/pro(Techmath LTD). Analyzing from 3D scan data, more than 70% of the upper body surface showed surface change rate under 20%. It was shoulder and under arm side part that showed most noticeable body surface change when moving. A parametric model with convex surface was generated and flattened onto the plane, resulting 2D pattern. The error rate occurring in the process of 3D to 2D conversion was 0.2% for outline and 0.13% for area, respectively. Thirteen kinds of stretchable fabrics in the market were collected for this study. Stretch property was in the range of 16.0~58.2% for wale direction; 23.1~78.4% for course. Based on wear trial test, four fabrics were chosen for making the 1st experimental garment and finally one fabric was chosen for the 2nd one, which was developed applying 4 kinds of crosswise reduction rate on 2D pattern: 0, 5, 10, and 15%. Through wear trial test and garment pressure measurement, experimental garment applied with 10% pattern reduction rate was evaluated as most comfortable and considerable.

Electromagnetic Wave Shielding Effectiveness of Electroless Chemical Copper and Nickel Plating PET fabrics (구리와 니켈 금속이 무전해 도금된 폴리에스테르 섬유의 구조에 따른 전자파 차폐성)

  • Chun, Tae-Il;Park, Jung-Hwan
    • Fashion & Textile Research Journal
    • /
    • v.10 no.3
    • /
    • pp.385-388
    • /
    • 2008
  • Four kinds of PET fabrics were coated with Copper and Nickel by electroless chemical plating, and the electromagnetic wave shielding effectiveness for those samples have been examined. The shielding effectiveness showed between 90 dB and 70 dB, and it related to the fabric structure, such as cover factor and cloth density. The dense fabric structure showed the better shielding effect.

Research of a new tie-dyeing tool based on 3D printing technology

  • Tu, Dan Dan;Kim, Sohyun
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.1
    • /
    • pp.161-171
    • /
    • 2022
  • Traditional tie-dyeing is widely implemented in the clothing handicraft culture in China, South Korea, and Japan. Since it was developed 2,000 years ago, it has become a popular method of fabric making in the world and is highly respected by fashion designers. Based on the existing traditional tie-dyeing methods, this study conducted specific research on the 3D printing technology of the SLS laser method and the micro tool design application method of the clamp-dyeing process. Through the experimental methods of this study, it proposes to use the "7000 Nylon" material, which is commonly used in 3D printing, to develop a new clamp-dyeing tool. This new tool can be widely used in the clamp-dyeing of fabrics, such as cotton, hemp, silk, and some chemical fibers. The applied method and principle can be consistent with the traditional clamp-dyeing method. Therefore, the innovation of tie-dyeing technology is the best protection measure for the development and inheritance of traditional fabric making. The continuation of artistic life needs originality, which is also the best response to market competition. At the same time, this new design of the clamp-dyeing tool has the characteristics of novelty, innovation, and rich changes, which aligns with the new fashion demands of current fabric design.

Comparisons of Thermal-moisture Properties in Combination of 3D spacer and Polyurethane(PU) Foam for Mold Brassiere Cups (몰드 브래지어 컵의 제작을 위한 3D 스페이서 패브릭과 폴리우레탄(PU) 폼 조합에 따른 열·수분 전달 특성 비교)

  • Lee, Hyun Young;Park, Huiju
    • Korean Journal of Human Ecology
    • /
    • v.24 no.2
    • /
    • pp.285-295
    • /
    • 2015
  • To identify optimized thermal properties of mold brassiere cup for improved thermal comfort during summer, we compared the thermal resistance and the water vapor permeability of Polyurethane (PU) foam, 3D spacer fabric and the two combined materials of the PU foam and the 3D spacer fabric. Four experimental mold brassieres were made of the materials for wearing test. Six women in their twenties evaluated the wearing sensation in the hot and humid environment. The changes in microclimate temperature and humidity while wearing test brassiere cups were measured. Results indicate that thermal resistance increased as more PU foam were combined, while the water vapor permeability was higher as the content of the 3D spacer fabric increased at thickness of 18mm and over. However, in the wear test, the PU foam brassiere was the most preferred in all ambient conditions due to its soft, flexible and smooth texture, despite its high thermal resistance and low water vapor permeability. This indicates that the textures of mold foams are more dominant properties than thermal properties for mold foams in determining the wear comfort of mold brassieres.