• Title/Summary/Keyword: 3D displacement

Search Result 1,020, Processing Time 0.025 seconds

Posterior Cruciate Ligament Augmentation Using an Autogenous Hamstring Tendon Graft and the Posterior-Posterior Triangulation Technique (만성 단독 후방십자인대 파열에서 자가 슬괵건과 후-후 삼각술기를 이용한 만성 후방십자인대 보강술)

  • Kim, Yeung Jin;Chae, Soo Uk;Choi, Byong San;Kim, Jong Yun;Lee, Hwang Yong;Han, Chang Wan;Han, Su Hyoun
    • Journal of the Korean Arthroscopy Society
    • /
    • v.17 no.1
    • /
    • pp.24-30
    • /
    • 2013
  • Purpose: To evaluate the outcome of arthroscopic posterior cruciate ligament (PCL) augmentation using an autogenous hamstring tendon graft and the posterior-posterior triangulation technique with preservation of ligament remnant or elongated ligament. Materials and Methods: From January 2002 to December 2009, we performed PCL augmentation using an autogenous hamstring tendon graft and the posterior-posterior triangulation technique in 32 patients. The mean age was 35.2 years. Twenty two cases were male and 10 cases were female. Average follow-up period was 5 years and 5 months (range: 2-7.9). Subjective and objective parameters were utilized in analyses, such as the mean range of motion, post. drawer test, Lysholm knee score, Tegner activity score, International Knee Documentation Cominittee (IKDC) grade, and second look arthroscopic examination. Results: At last follow up posterior displacement by the Telos stress test decreased from $10.8{\pm}5.1\;mm$ to $2.8{\pm}3.7\;mm$ (p<0.05). The final Lysholm knee score improved from $60.4{\pm}5.8$ to $84.6{\pm}4.8$. Tegner activity score improved from 3.2 to 4.8. The final IKDC grade was A in 18, B in 11, C in 3. Postoperative Lysholm knee score, IKDC grades, Tegner activity scale, and posterior displacement demonstrated statistically significant improvement compared to the preoperative state (p<0.05). Conclusion: Arthroscopic PCL reconstruction using an autogenous hamstring tendon with preservation of ligament remnant showed a good clinical results and posterior stability.

  • PDF

Development and Application of Slime Meter for Evaluation of Slime Thickness in Borehole (굴착공 내 슬라임 두께 평가를 위한 슬라임미터의 개발 및 적용)

  • Hong, Won-Taek;Woo, Gyuseong;Lee, Jong-Sub;Song, Myung Jun;Lim, Daesung;Park, Min-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.29-38
    • /
    • 2018
  • The slime formed at the bottom of the borehole causes the excessive displacement and loss of the bearing capacity of the drilled shaft. In this study, the slime meter is developed for the evaluation of the slime based on the electrical properties of the fluid and the slime in the borehole. The slime meter is composed of a probe instrumented with electrodes and temperature sensor and a frame with rotary encoder, so that the slime meter profiles the electrical resistivity compensated with temperature effect along the depth. For the application of the slime meter, three field tests are conducted at a borehole with a diameter of 3 m and a depth of 46.9 m with different testing time and locations. For all the tests, the experimental results show that while electrical resistivities are constantly measured in the fluid, the electrical resistivities sharply increase at the surface of the slime. Therefore, the slime thicknesses are estimated by the differences in the depths of the slime surface and the ground excavation. The experimental results obtained at the same testing point with different testing time show that the estimated thickness of the slime increases by the elapsed time. Also, the estimated slime at the side of the borehole is thicker than that at the center of the borehole. As the slime meter estimates the slime in the borehole by measuring the electrical resistivity with simple equipment, the slime meter may be effectively used for the evaluation of the slime formed at the bottom of the borehole.

The Reinforcing Effect of Blade Attached Pile to Support Submerged Breakwater (보강날개로 보강된 수중잠제 지지말뚝의 보강효과 분석)

  • Jeong, Sangseom;Hong, Moonhyun;Ko, Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.863-874
    • /
    • 2015
  • The use of pile reinforcement is considered as one of the most promising techniques for improving load carrying capacity of piles in offshore area. In this study, to consider the horizontal and uplift bearing capacity of submerged breakwater bearing pile, exclusive analysis on load-transfer behaviour of pile was conducted. First of all, check the reinforcing effect from the three-dimensional finite element method, and estimate load transfer curve (ground reaction force). Based on these results, the reinforcing effect was quantified by estimating the coefficients of horizontal and uplift reinforcement of reinforced piles. Load transfer function with consideration of the reinforcing effect was proposed from estimated coefficients. A comparison of the analysis using the proposed load transfer function with three-dimensional finite element analysis has resulted that the proposed load transfer function is displaying good accuracy of predicting behavior of the load transfer between the pile and soil reinforcement. Interpretation of the submerged structure by applying a load transfer function considering the reinforcing effect, has shown that the reinforced pile's shear, bending moment and displacement are less than that of non-reinforced piles, while the subgrade reaction modulus arises greater. Thus, it is expected to be relatively cost effective in terms of design.

A Theoretical Model for the Analysis of Residual Motion Artifacts in 4D CT Scans (이론적 모델을 이용한 4DCT에서의 Motion Artifact 분석)

  • Kim, Tae-Ho;Yoon, Jai-Woong;Kang, Seong-Hee;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.145-153
    • /
    • 2012
  • In this study, we quantify the residual motion artifact in 4D-CT scan using the dynamic lung phantom which could simulate respiratory target motion and suggest a simple one-dimension theoretical model to explain and characterize the source of motion artifacts in 4DCT scanning. We set-up regular 1D sine motion and adjusted three level of amplitude (10, 20, 30 mm) with fixed period (4s). The 4DCT scans are acquired in helical mode and phase information provided by the belt type respiratory monitoring system. The images were sorted into ten phase bins ranging from 0% to 90%. The reconstructed images were subsequently imported into the Treatment Planning System (CorePLAN, SC&J) for target delineation using a fixed contour window and dimensions of the three targets are measured along the direction of motion. Target dimension of each phase image have same changing trend. The error is minimum at 50% phase in all case (10, 20, 30 mm) and we found that ${\Delta}S$ (target dimension change) of 10, 20 and 30 mm amplitude were 0 (0%), 0.1 (5%), 0.1 (5%) cm respectively compare to the static image of target diameter (2 cm). while the error is maximum at 30% and 80% phase ${\Delta}S$ of 10, 20 and 30 mm amplitude were 0.2 (10%), 0.7 (35%), 0.9 (45%) cm respectively. Based on these result, we try to analysis the residual motion artifact in 4D-CT scan using a simple one-dimension theoretical model and also we developed a simulation program. Our results explain the effect of residual motion on each phase target displacement and also shown that residual motion artifact was affected that the target velocity at each phase. In this study, we focus on provides a more intuitive understanding about the residual motion artifact and try to explain the relationship motion parameters of the scanner, treatment couch and tumor. In conclusion, our results could help to decide the appropriate reconstruction phase and CT parameters which reduce the residual motion artifact in 4DCT.

The Effects of the Stirrup Length Fitted to the Rider's Lower Limb Length on the Riding Posture for Less Skilled Riders during Trot in Equestrian (승마 속보 시 미숙련자에게 적용한 하지장 비율 74.04% 등자길이 피팅의 기승자세 효과)

  • Hyun, Seung-Hyun;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.335-342
    • /
    • 2015
  • Objective : The purposes of this study was to analyze the effects of the stirrup length fitted to the rider's lower limb length and it's impact on less skilled riders during trot in equestrian events. Methods : Participants selected as subjects consisted of less skilled riders(n=5, mean age: $40.02{\pm}10.75yrs$, mean heights: $169.77{\pm}2.08cm$, mean body weights: $67.65{\pm}7.76kg$, lower limb lengths: $97.26{\pm}2.35cm$, mean horse heights: $164.00{\pm}5.74cm$ with 2 type of stirrups lengths(lower limb ratio 74.04%, and 79.18%) during trot. The variables analyzed consisted of the displacement for Y axis and Z axis(head, and center of mass[COM]) with asymmetric index, trunk front-rear angle(consistency index), lower limb joint(Right hip, knee, and ankle), and average vertical forces of horse rider during 1 stride in trot. The 4 camcorder(HDR-HC7/HDV 1080i, Spony Corp, Japan) was used to capture horse riding motion at a rate of 60 frames/sec. Raw data was collected from Kwon3D XP motion analysis package ver 4.0 program(Visol, Korea) during trot. Results : The movements and asymmetric index didn't show significant difference at head and COM, Also, 74.04% stirrups lengths in trunk tilting angle showed significant difference with higher consistency than that of 79.18% stirrups lengths. Hip and knee joint angle showed significant difference with more extended posture than that of 74.04% stirrups lengths during trot. Ankle angle of 79.18% stirrups length showed more plantarflexion than that of 74.04% stirrups lengths. Average vertical force of rider showed significant difference with higher force at 79.18% stirrups lengths than that of 74.04% stirrups lengths during stance phase. Conclusion : When considering the above, 74.04% stirrups length could be effective in impulse reduction with consistent posture in rather less skilled horse riders.

Three-Dimensional Kinematic Model of the Human Knee Joint during Gait

  • Mun, Joung-Hwan;Seichi Takeuchi
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • It is well known that the geometry of the articular surface plays a major role in the kinematic and kinetic analysis to understand human knee joint function during motion. The functionality of the knee joint cannot be accurately modeled without considering the effects of sliding and lolling motions. We Present a 3-D human knee joint model considering sliding and rotting motion and major ligaments. We employ more realistic articular geometry using two cam profiles obtained from the extrusion of the sagittal Plain view of the representative Computerized Tomography image of the knee joint compared to the previously reported model. Our model shows good agreement with the already reported experimental results on Prediction of the lines of force through the human joint during gait. The contact point between femur and tibia moves toward the Posterior direction as the knee undergoes flexion, reflecting the coupling of anterior and Posterior motion with flexion/extension. The anterior/posterior displacement of the contact Point on the tibia plateau during one gait cycle is about 16 mm. for the lateral condyle and 25 mm. for the medial condyle using the employed model Also. the femur motion on the tibia undergoes lateral/medial movement about 7 mm. and 10 mm. during one gait cycle for the lateral condyle and medial condyle. respectively. The developed computational model maybe Potentially employed to identify the joint degeneration.

The Nonlinear Behavior Characteristics of the 3D Mixed Building Structures with Variations in the Lower Stories (입체 복합구조물의 하부골조 층수 변화에 따른 비선형 거동특성)

  • 강병두;전대한;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • The upper wall-lower frame structures(mixed building structures) are usually composed of shear wall structure in the upper part of structure which is used as residential space and frame structure in the lower part of structure which is used as commercial space centering around the transfer system in the lower part of structure. These structures are characteristics of stiffness irregularity, mass irregularity, and vertical geometric irregularity. The purpose of this study is to investigate the nonlinear response characteristics and the seismic capacity of mixed building structures when the number of stories in the lower frame is varied. The conclusions of this study are following. 1) As the result of push-over analysis of structure such as roof drift(i.e. roof displacement/structural height) and base shear coefficient, when the stories of lower frame system are increased, base shear coefficient is decreased, but roof drift is increased. 2) According to an increase in stories of the lower fame, story drift and ductility ratio of upper wall system are decreased and behavior of upper wall system is closed to elastic. 3) When the stories of lower frame system are increased, the excessive story drift is concentrated on the lower frame system.

Seismic response characteristics of the hypothetical subsea tunnel in the fault zone with various material properties (다양한 물성의 단층대를 통과하는 가상해저터널의 지진 시 응답 특성)

  • Jang, Dong In;Kwak, Chang-Won;Park, Inn-Joon;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1061-1071
    • /
    • 2018
  • A subsea tunnel, being a super-sized underground structure must ensure safety at the time of earthquake, as well as at ordinary times. At the time of earthquake, in particular, of a subsea tunnel, a variety of response behaviors are induced owing to relative rigidity to the surrounding ground, or difference of displacement, so that the behavior characteristics can be hardly anticipated. The investigation aims to understand the behavior characteristics switched by earthquake of an imaginary subsea tunnel which passes through a fault zone having different physical properties from those of the surrounding ground. In order to achieve the aim, dynamic response behaviors of a subsea tunnel which passes through a fault zone were observed by means of indoor experiments. For the sake of improved earthquake resistance, a shape of subsea tunnel to which flexible segments have been applied was considered. Afterward, it is believed that a D/B can be established through 3-dimensional earthquake resistance interpretation of various grounds, on the basis of verified results from the experiments and interpretations under various conditions. The present investigation performed 1 g shaking table test in order to verify the result of 3-dimensional earthquake resistance interpretation. A model considering the similitude (1:100) of a scale-down model test was manufactured, and tests for three (3) Cases were carried out. Incident seismic wave was introduced by artificial seismic wave having both long-period and short-period earthquake properties in the horizontal direction which is rectangular to the processing direction of the tunnel, so that a fault zone was modeled. For numerical analysis, elastic modulus of the fault zone was assumed 1/5 value of the modulus of individual grounds surround the tunnel, in order to simulate a fault zone. Resultantly, reduced acceleration was confirmed with increase of physical properties of the fault zone, and the result from the shaking table test showed the same tendency as the result from 3-dimensional interpretation.

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

A Study on the Hull-dimension of 89 ton class Stow-net Vessel with Stern-fishing (89톤급 선미식 안강망어선의 선형치수에 관한 연구)

  • Park, Je-Ung;Lee, Hyeon-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.159-165
    • /
    • 1997
  • This paper presents the optimum dimension of 89 ton class stow-net vessel with stern-fishing. The model of basic design is developed by using the optimization techniques referring to objective function and numerous constraints as follows; speed, fishing quantity, fishing days, catch per unit effort(CPUE), and weight/ratio of main dimensions, etc. Thus, the basic design of stow-net fishing vessel is built up by using the optimization of the design variables called the economic optimization criteria, and the objective function represents the criterion which is cost benefit ratio(CBR). The main conclusions are as follows. 1. S/W for decision of optimum hull size is developed in 89 ton class stow-net fishing vessel which is constructed with optimization of the design variables called the economic optimization criteria. 2. For optimum ship dimensions in 89 ton class stow-net fishing vessel, the hull dimensions can be obtained in the range of L= 27.3m, B = 6.6m, D = 2.80m, Cb = 0.695, T/D = 0.80, $\Delta$(displacement)=281.7ton with 10 knots.

  • PDF