• Title/Summary/Keyword: 3D digital technology

Search Result 1,140, Processing Time 0.031 seconds

The effect of silica composite properties on DLP-stereolithography based 3D printing (실리카 복합소재의 물성에 따른 DLP 3D printing 적용 연구)

  • Lee, Jin-Wook;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.54-60
    • /
    • 2019
  • Recently, various composite materials for additive manufacturing are interested to expand the application field of 3D printing. 3D printing technique was mainly developed using polymer, and ceramic materials for 3D printing are still in the early stage of research due to the requirement of high solid content and post treatment process. In this study, silica particles with various diameters were surface treated with silane coupling agent, and synthesized as silica composite with photopolymer to apply DLP 3D printing process. DLP is an additive manufacturing technology, which has high accuracy and applicability of various composite materials. The rheological behavior of silica composite was analyzed with various solid contents. After DLP 3D printing was performed using silica composites, the printing accuracy of the 3D printed specimen was less than about 3 % to compare with digital data and he bending strength was 34.3 MPa at the solid content of 80 wt%.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

3D Modeling and Simulation using Virtual Manipulator (가상 조작기를 이용한 3D 모델링 및 시뮬레이션)

  • Park, Hee-Seong;Kim, Ho-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.547-550
    • /
    • 2011
  • The purpose of this paper is to verify and validate the maintenance tasks of the construction of a nuclear facility using a digital mock-up and simulation technology instead of a physical mock-up. Prior to the construction of a nuclear facility, a remote simulator that provides the opportunity to produce a complete digital mock-up of the PRIDE (Pyroprocess Integrated Inactive DEmonstration Facility) region and its remote handling equipment, including operations and maintenance procedures has been developed. In this paper, the system architecture and graphic user interface of a remote simulator that coincides with the extraordinary nature of a nuclear fuel cycle facility is introduced. In order to analyze the remote accessibility of a remote manipulator, virtual prototyping that was performed it by using haptic device of external input devices under a 3D full-scale digital mock-up is explained.

The Design of Digital Human Content Creation System (디지털 휴먼 컨텐츠 생성 시스템의 설계)

  • Lee, Sang-Yoon;Lee, Dae-Sik;You, Young-Mo;Lee, Kye-Hun;You, Hyeon-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.271-282
    • /
    • 2022
  • In this paper, we propose a digital human content creation system. The digital human content creation system works with 3D AI modeling through whole-body scanning, and is produced with 3D modeling post-processing, texturing, rigging. By combining this with virtual reality(VR) content information, natural motion of the virtual model can be achieved in virtual reality, and digital human content can be efficiently created in one system. Therefore, there is an effect of enabling the creation of virtual reality-based digital human content that minimizes resources. In addition, it is intended to provide an automated pre-processing process that does not require a pre-processing process for 3D modeling and texturing by humans, and to provide a technology for efficiently managing various digital human contents. In particular, since the pre-processing process such as 3D modeling and texturing to construct a virtual model are automatically performed by artificial intelligence, so it has the advantage that rapid and efficient virtual model configuration can be achieved. In addition, it has the advantage of being able to easily organize and manage digital human contents through signature motion.

A Case Study on the Framework Development of the Metal 3D Printing Control & Monitoring System (금속 3D프린팅 통합 제어 및 모니터링 시스템 개발을 위한 프레임워크에 관한 연구)

  • Jeon, Byung-Ju;Lee, Sun-Kyu;Lee, Seung-Hee;Jang, Sung-Ho;Jung, Goo-sang
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.187-194
    • /
    • 2020
  • This study present to Framework & R&D direction of the 3d printing Integrated Control & Monitoring System. To ensure this purpose, we developed integrated 3d printing control system Framework for DED & PBF and we introduce 4 monitoring system include photo diode, gas flow, acoustic and spectrometer sensors. For this study, we utilize metal 3d printing system from Conception., OKE Tech and DE&T who are still developing Metal 3D Printing Technology since 2017. In the result, we represent the latest 3D Printing Control and Monitoring System for the next 3D Printing researcher and we hope this study will be used as a basic reference and data for Cooperation between mechanic, electronic and material fields.

A Case Study on Collaborations in 3D Printing Fashion (3D 프린팅 패션에 나타난 콜라보레이션(Collaboration) 사례연구)

  • Park, Suyeon;Yoo, Youngsun
    • Journal of the Korean Society of Costume
    • /
    • v.66 no.7
    • /
    • pp.124-138
    • /
    • 2016
  • The present study observes collaboration methods in which 3D printing was a part of the fashion manufacturing process, expression methods of such cases, and their ripple effects. As a result, the three types of collaborations between fashion designers and other industry fields, fashion brands and 3D printing companies, and fashion designers and artists. Case analysis results and ripple effects found according to each collaboration method were as follows. First, in collaborations found were between fashion designers and other industry fields, 3D printed fashion works with futuristic images were seen through the fusion of future industries, which claim to support cutting edge digital technology, and creative fashion design. As they were mainly collaborations between automobile industries with cutting edge images or digital related industries and fashion designers, they were expressed as a new form of experimental clothing, and were used as strategies to improve future corporate images of the high tech industry. Second, in collaborations between fashion brands and 3D printing technology businesses, the sporting good brands and the shoe industry attempted to let their products be known through the promotion of functional material or ergonomic technology. While they emphasize practicality by mainly using flexible material, they were mainly proposed as functional sporting goods for famous players or as shoe accessories, so methods are still used for public distribution as brand promoting marketing strategies. Third, with collaborations between fashion designers and artists, creative pieces were shown through the grafting of 3D printing technology, the artistry of artists, and the experimentation of fashion designers. In particular, the innovative value of fashion as art was created through the union of the artistic 3D modeling technology support of artists and the creativity of designers. Like this, 3D printing fashion can graft the cutting edge nature of fashion to other industry fields through collaborations, enhancing pacesetting images, and in the fashion field, it can improve possibilities for innovations in the fashion industry through the support of 3D printing technology businesses and artists, raising expectations towards future human living.

A Study of Artificial Intelligence Generated 3D Engine Animation Workflow

  • Chenghao Wang;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.286-292
    • /
    • 2023
  • This article is set against the backdrop of the rapid development of the metaverse and artificial intelligence technologies, and aims to explore the possibility and potential impact of integrating AI technology into the traditional 3D animation production process. Through an in-depth analysis of the differences when merging traditional production processes with AI technology, it aims to summarize a new innovative workflow for 3D animation production. This new process takes full advantage of the efficiency and intelligent features of AI technology, significantly improving the efficiency of animation production and enhancing the overall quality of the animations. Furthermore, the paper delves into the creative methods and developmental implications of artificial intelligence technology in real-time rendering engines for 3D animation. It highlights the importance of these technologies in driving innovation and optimizing workflows in the field of animation production, showcasing how they provide new perspectives and possibilities for the future development of the animation industry.

Development of Digital Twin platform using Smart Factory based CPPS (스마트팩토리 기반 CPPS를 활용한 Digital Twin 플랫폼 개발)

  • Lee, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.305-307
    • /
    • 2021
  • In this paper, we propose a study related to the development of a Digital-Twin platform using a smart factory based CPPS (Cyber Pysical Production System) using ICT (Information Communication Technology) technology. The platform developed through this study performs a 3D model simulation function in conjunction with P3R (Product, Process, Plant, Resource) including BOP (Bill of Process) management function from the preceding manufacturing process planning stage. In addition, we propose a digital twin platform that can predict production processes, equipment, layout, and production. The platform proposed through this paper proposes a feature that can manage the entire smart factory manufacturing process from the initial planning design stage to the manufacturing, production, operation, and maintenance stages.

  • PDF

3D Volumetric Capture-based Dynamic Face Production for Hyper-Realistic Metahuman (극사실적 메타휴먼을 위한 3D 볼류메트릭 캡쳐 기반의 동적 페이스 제작)

  • Oh, Moon-Seok;Han, Gyu-Hoon;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.751-761
    • /
    • 2022
  • With the development of digital graphics technology, the metaverse has become a significant trend in the content market. The demand for technology that generates high-quality 3D (dimension) models is rapidly increasing. Accordingly, various technical attempts are being made to create high-quality 3D virtual humans represented by digital humans. 3D volumetric capture is spotlighted as a technology that can create a 3D manikin faster and more precisely than the existing 3D model creation method. In this study, we try to analyze 3D high-precision facial production technology based on practical cases of the difficulties in content production and technologies applied in volumetric 3D and 4D model creation. Based on the actual model implementation case through 3D volumetric capture, we considered techniques for 3D virtual human face production and producted a new metahuman using a graphics pipeline for an efficient human facial generation.

Display System of Ultra-view Image using Hybrid Image Pickup System (하이브리드 영상획득 장치를 이용한 초다시점 영상 디스플레이 시스템)

  • Choi, Hyun-Jun;Jang, Seok-Woo;Lee, Suk-Yun;Kim, Jae-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1285-1290
    • /
    • 2012
  • People have been interested in the next generation media and service over 3D by development of 3D industry and generalization of 3D-related content and equipment in recent year. Many researchers predict that a strong candidate is digital hologram. Holographic technology is classified to capture(or generation), processing, and display(or reconstruction). This paper discusses the digital holographic display system using hybrid image pickup system and proposes a new structure of digital holographic display system. Through the proposed method a digital hologram can be scalably serviced according to display equipments with various resolutions, computing power of decoding part, and network bandwidth.