• Title/Summary/Keyword: 3D design

Search Result 9,987, Processing Time 0.038 seconds

Applications of 3D CAD and 3D Printing in Engineering Design Education (3D CAD 와 3D프린팅을 연계한 공학설계교육 활용)

  • Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1085-1091
    • /
    • 2014
  • Recently, 3D printing has received increasing attention due to its boundless potentials. Because 3D printing starts from 3D geometry information, computer-aided design (CAD) is an essential technology to build 3D geometry data. These days, education of 3D CAD for engineering students has been changed from the theoretical lecture to practical design training using commercial CAD software. As a result, open-ended design projects have replaced the traditional theoretical examinations to evaluate students' outcomes. However, such design projects are not enough to evaluate students' outcomes because their results are expressed in two-dimensional ways. In this paper, applications of 3D printing in engineering design education are discussed by describing the procedure and outcomes of design projects. It was found that the use of 3D printing could improve students' outcomes by fabricating real physical models out of their designs.

A Research on AI Generated 2D Image to 3D Modeling Technology

  • Ke Ma;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.81-86
    • /
    • 2024
  • Advancements in generative AI are reshaping graphic and 3D content design landscapes, where AI not only enriches graphic design but extends its reach to 3D content creation. Though 3D texture mapping through AI is advancing, AI-generated 3D modeling technology in this realm remains nascent. This paper presents AI 2D image-driven 3D modeling techniques, assessing their viability in 3D content design by scrutinizing various algorithms. Initially, four OBJ model-exporting AI algorithms are screened, and two are further evaluated. Results indicate that while AI-generated 3D models may not be directly usable, they effectively capture reference object structures, offering substantial time savings and enhanced design efficiency through manual refinements. This endeavor pioneers new avenues for 3D content creators, anticipating a dynamic fusion of AI and 3D design.

Direct Clothing Pattern Development from the 3D Illustration on the Personal Human Body Model (인체모델과 3차원 일러스트레이션을 이용한 의복패턴개발)

  • Park, Hye-Jun;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.2
    • /
    • pp.340-347
    • /
    • 2008
  • A prototype of 3D clothing design system with a direct pattern development function was suggested, reflecting intuitive design functions and design modifications while considering the fit of clothing patterns with the 3D human body in the virtual 3D space. The research method was as follows. Clothing models were created using a 3D design tool, 3ds max on the surface of 3D human body model made by scanning an actual human body. 3D illustrations were completed by revising the fit and sizing of the human body and clothing models. 2D T-shirt pattern was produced 3D illustrations using from a 3D scanning data modeling solution RapidForm 2004, a 2D conversion program for 3D data called 2C-AN, and Yuka CAD. As a result, the following conclusions were made. The fit of the clothing and human body can be adjusted by reflecting individual body figure characteristics and 3D illustrations over the actual 3D body model. Furthermore, intuitive design support functions were intensified overcoming the weak point of existing 3D clothing design system by developing the direct clothing design in the virtual 3D space. 3D illustration design modifications can be directly reflected on clothing patterns from 3D illustrations by 3D clothing design system developed in this study.

Analysis of Furniture Design Cases Using 3D Printing Technique (3D 프린팅 기술을 활용한 가구디자인 사례 분석 연구)

  • Kang, Hyun-Dae
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.177-186
    • /
    • 2015
  • This study aims to suggest the direction in which furniture design can contribute, keeping with the trend of small quantity batch production by analyzing cases of furniture design manufacturing. This study analyzed cases of furnitures and lights made by 3D printing with 3 classifications. They are 1st, classification by correlation between 3D printing method and materials, 2nd, classification by 8 formative characteristics of 3D printing furniture design, 3rd, comparison analysis of competitiveness between existing furniture design and 3D printing furniture design by practicality, usability and durability. The competitiveness 3D printing technique arouses in furniture design industry, which is investigated in this thesis, is as follows. 1st, small quantity batch production, which caters to personal taste, is made possible. 2nd, transmission and transportation via digital are became more convenient. 3rd, it brings about a breakthrough in furniture design manufacturing. 4th, there is room for development into the 'smart furniture design' industry through collaborative use of 3D printing and internet of things. 5th, an Eco-friendly method of furniture design is consistently facilitated.

A basic study 3D model advancement method for nuclear power plant (원자력 발전설비의 3D 모델 상세화 방안에 대한 기초 연구)

  • Lim, Byung-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.37-38
    • /
    • 2018
  • BIM(Building Information Modeling) in the architecture, VDC(Virtual Design and Construction) defined CIFE(Center for Integrated Facility Engineering) of Stanford university in USA, and Data-driven design definition issued by TECDOC-1284 of IAEA are doing data-level design generated by 3D CAD technology, integrating and managing related information based on the 3D model, and Using 3D models effectively during nuclear power plant life cycle. 3D model of domestic nuclear power industry is using interference review between design fields, 4D system linked 3D construction model and schedule activity, but the 3D model generated in the design phase is effectively not utilized during the construction, operation, decommissioning. therefore, This study is aimed to suggest 3D model LOD(Level of Detail) advancement method through the analysis of existing literature, 2D drawings, and 3D models throughout nuclear power plant lifecycle.

  • PDF

Study on the Textile Structural Design using SLS 3D Printing Technology -Focused on Design of Flexible Woven Fabric Structure- (SLS 방식의 3D 프린팅 기술을 활용한 직물구조적인 디자인설계 연구 -유연성 있는 직조구조 직물설계를 중심으로-)

  • Song, HaYoung
    • Journal of Fashion Business
    • /
    • v.23 no.3
    • /
    • pp.67-84
    • /
    • 2019
  • Since the early 2000s, various fashion design products that use 3D printing technology have constantly been introduced to the fashion industry. However, given the nature of 3D printing technology, the flexible characteristics of material of textile fabrics is yet to be achieved. The aim of this study is to develop the optimal design conditions for production of flexible and elastic 3D printing fabric structure based on plain weave, which is the basic structure in fabric weaving using SLS 3D printing technology. As a the result this study aims to utilize appropriate design conditions as basic data for future study of flexible fashion product design such as textile material. Weaving structural design using 3D printing is based on the basic plain weave, and the warp & weft thickness of 4mm, 3mm, 2mm, 1.5mm, 1mm, and 0.7mm as expressed in Rhino 6.0 CAD software program for making a 3D model of size $1800mm{\times}180mm$ each. The completed 3D digital design work was then applied to the EOS SLS Machine through Maker ware, a program for 3D printer output, using polyamide 12 material which has a rigid durability strength, and the final results obtained through bending flexibility tests. In conclusion, when designing the fabric structure design in 3D printing using SLS method through application of polyamide 12 material, the thickness of 1 mm presented the optimal condition in order to design a durable digital textile structure with flexibility and elasticity of the 3D printing result.

A Proposal of Educational 3D Modelling Software Development Type Via User Experience Analysis of Open Source 3D Modelling Software (무료공개 3D모델링 소프트웨어 사용자 경험 분석을 통한 교육용 3D모델링 소프트웨어 개발유형 제안)

  • Lee, Guk-Hee;Cho, Jaekyung
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.87-102
    • /
    • 2017
  • With increasing interest in 3D printing, the interest in the 3D modelling training that should precede the 3D printing is increasing. However, the existing 3D modelling software is developed mostly by foreign brands. Thus, the interfaces are all in English. 3D modelling software training for Korean novices who are not familiar with these terms has constraints. This study aims to explore what to consider when developing a Korean model for 3D modelling educational software for 3D printing in the face of such reality. For this goal, after having novices with no experience in 3D modeling to perform a house building task using either 12D Design or Tinker CAD, we conducted a survey. It was found in the result that more users favored Tinker CAD over 123D Design, and the errors involved while working with the Tinker CAD were less than those with the 123D Design, and the ratio of people who completed the task with the Tinker CAD was higher than that with the 123D Design. In general discussion, an introductory level educational 3D modeling software development is proposed which utilize characteristics of Tinker CAD (easy modelling is possible by three-dimensional figures) and web-based method. Also, a beginner/intermediate level educational 3D modeling software development is proposed which utilize characteristics of 123D Design (with finer measurement manipulations and figure alignment) and Windows-based method.

Development of a System for Visualization of the Plant 3D Design Data Based on ISO 15926 (ISO 15926 기반 플랜트 3D 설계 데이터 가시화를 위한 시스템 개발)

  • Jeon, Youngjun;Kim, Byung Chul;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.145-158
    • /
    • 2015
  • ISO 15926 is an international standard for the sharing and integration of plant lifecycle information. Plant design data consist of logical configuration, equipment specifications, 2D piping and instrument diagrams (P&IDs), and 3D plant models (shape data). Although 3D computer-aided design (CAD) data is very important data across the plant lifecycle, few studies on the exchange of 3D CAD data using ISO 15926 have been conducted so far. For this, we analyze information requirements regarding plant 3D design in the process industry. Based on the analysis, ISO 15926 templates are defined for the representation of constructive solid geometry (CSG) - based 3D design data. Since system environments for 3D CAD modeling and Semantic Web technologies are different from each other, we present system architecture for processing and visualizing plant 3D design data in the Web Ontology Language (OWL) format. Through the visualization test of ISO 15926-based 3D design data for equipment with a prototype system, feasibility of the proposed method is verified.

Development of an ISO 15926-based Integration Platform of 3D Design Data for Process Plants (ISO 15926 기반 공정 플랜트 3D 설계 정보 통합 플랫폼의 개발)

  • Kim, Byung Chul;Park, Sangjin;Kim, Bong Cheol;Myung, Sehyun;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.385-400
    • /
    • 2015
  • ISO 15926 is an international standard for the integration and sharing of plant lifecycle data. Plant 3D design data typically consist of logical configuration, equipment specifications and ports, and 3D shape data. This paper presents the method for the ISO 15926-based integration of plant 3D design data. For this, reference data (class, attribute, and template) of ISO 15926 were extended to describe plant 3D design data. In addition to the data model extension, a plant design information integration platform which reads plant 3D design data in ISO 15926 and displays 3D design information was developed. Finally, the prototype platform is verified through the experiment of loading and retrieving plant 3D design data in ISO 15926 with the platform.

Development of Creative Design and Construction Methods of Bridge Piers using 3D Model (3차원 모델 기반의 미적 교각 설계 및 시공 기술 개발)

  • Lee, Sang-Yong;Dong, Ngoc Son;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • Bridge piers typically have circular or rectangular shapes without decorative design. Prefabrication for accelerated construction has been widely adopted in bridge structures. Cost for steel formwork is a main restriction of creative irregular shapes. 3D modelling techniques allow creative design of columns and 3D printing provides possibility to minimize the fabrication cost. In this paper, 3D design process of bridge piers was suggested by converting 2D picture into 3D decorative shape. Formwork design using 3D printed panels was also proposed and mock-up tests were conducted. Precast columns need accurate geometry control from fabrication to assembly. Laser scanning and geometry control devices were adopted. Through the digitalized process of design, fabrication and assembly, creative design of structures can be realized in reasonable cost range.