• Title/Summary/Keyword: 3D depth Camera

검색결과 299건 처리시간 0.022초

Implementation of a Gesture Recognition Signage Platform for Factory Work Environments

  • Rho, Jungkyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권3호
    • /
    • pp.171-176
    • /
    • 2020
  • This paper presents an implementation of a gesture recognition platform that can be used in a factory workplaces. The platform consists of signages that display worker's job orders and a control center that is used to manage work orders for factory workers. Each worker does not need to bring work order documents and can browse the assigned work orders on the signage at his/her workplace. The contents of signage can be controlled by worker's hand and arm gestures. Gestures are extracted from body movement tracked by 3D depth camera and converted to the commandsthat control displayed content of the signage. Using the control center, the factory manager can assign tasks to each worker, upload work order documents to the system, and see each worker's progress. The implementation has been applied experimentally to a machining factory workplace. This flatform provides convenience for factory workers when they are working at workplaces, improves security of techincal documents, but can also be used to build smart factories.

슬리트형 레이저 투광기를 이용한 고정밀 3차원 물체계측 (High precision 3-dimensional object measurement using slit type of laser projector)

  • 김태효;박영석;이취중
    • 제어로봇시스템학회논문지
    • /
    • 제3권6호
    • /
    • pp.613-618
    • /
    • 1997
  • In this paper, we designed a line CCD camera for a flying image, which is composed of a line CCD sensor(2048 cells) and a rotating mirror, and investigated its optical properties. We also made the 3-D image from the flying image which is made of 2-D image being juxtaposed to 1-D images obtained by the camera, and performed the calibration to acquire high precision 3-D data. As a result, we obtained the 3-D measurement system using the slit type of laser projector is available to measure the high precision shape of objects.

  • PDF

확장된 피사계 심도 알고리즘에서 엣지 정보 분석에 의한 3차원 깊이 정보 추출 방법 (The 3D Depth Extraction Method by Edge Information Analysis in Extended Depth of Focus Algorithm)

  • 강선우;김준식;주효남
    • 제어로봇시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.139-146
    • /
    • 2016
  • Recently, popularity of 3D technology has been growing significantly and it has many application parts in the various fields of industry. In order to overcome the limitations of 2D machine vision technologies based on 2D image, we need the 3D measurement technologies. There are many 3D measurement methods as such scanning probe microscope, phase shifting interferometry, confocal scanning microscope, white-light scanning interferometry, and so on. In this paper, we have used the extended depth of focus (EDF) algorithm among 3D measurement methods. The EDF algorithm is the method which extracts the 3D information from 2D images acquired by short range depth camera. In this paper, we propose the EDF algorithm using the edge informations of images and the average values of all pixel on z-axis to improve the performance of conventional method. To verify the performance of the proposed method, we use the various synthetic images made by point spread function(PSF) algorithm. We can correctly make a comparison between the performance of proposed method and conventional one because the depth information of these synthetic images was known. Through the experimental results, the PSNR of the proposed algorithm was improved about 1 ~ 30 dB than conventional method.

3차원 형상복원을 위한 새로운 시각장치 (A Novel Image Sensing System for 3D Reconstruction)

  • 이두현;권인소
    • 제어로봇시스템학회논문지
    • /
    • 제6권5호
    • /
    • pp.383-389
    • /
    • 2000
  • This paper presents a stereo camera system that provides a Pair of stereo images using a Biprism. The equivalent of a stereo Pair of images is formed as the left and right halves of a single CCD image. The system is therefore cheap and extremely easy to calibrate since it requires only one CCD camera. An additional advantage of the geometrical set-up is that corresponding features lie on the same scanline automatically, The single camera and Biprism have led to a simple stereo system for which correspondence is very easy and which is accurate for nearby objects in a small field of view. Since we use only a single lens, calibration of the system is greatly simplified. Given the parameters in the Biprism-stereo camera system, we can reconstruct the 3-D structure using only the disparity between the corresponding points.

  • PDF

Multi-camera-based 3D Human Pose Estimation for Close-Proximity Human-robot Collaboration in Construction

  • Sarkar, Sajib;Jang, Youjin;Jeong, Inbae
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.328-335
    • /
    • 2022
  • With the advance of robot capabilities and functionalities, construction robots assisting construction workers have been increasingly deployed on construction sites to improve safety, efficiency and productivity. For close-proximity human-robot collaboration in construction sites, robots need to be aware of the context, especially construction worker's behavior, in real-time to avoid collision with workers. To recognize human behavior, most previous studies obtained 3D human poses using a single camera or an RGB-depth (RGB-D) camera. However, single-camera detection has limitations such as occlusions, detection failure, and sensor malfunction, and an RGB-D camera may suffer from interference from lighting conditions and surface material. To address these issues, this study proposes a novel method of 3D human pose estimation by extracting 2D location of each joint from multiple images captured at the same time from different viewpoints, fusing each joint's 2D locations, and estimating the 3D joint location. For higher accuracy, the probabilistic representation is used to extract the 2D location of the joints, considering each joint location extracted from images as a noisy partial observation. Then, this study estimates the 3D human pose by fusing the probabilistic 2D joint locations to maximize the likelihood. The proposed method was evaluated in both simulation and laboratory settings, and the results demonstrated the accuracy of estimation and the feasibility in practice. This study contributes to ensuring human safety in close-proximity human-robot collaboration by providing a novel method of 3D human pose estimation.

  • PDF

능동형 센서의 깊이 정보를 이용한 컴퓨터 형성 홀로그램 (Computer-generated hologram based on the depth information of active sensor)

  • 김상진;강훈종;유지상;이승현
    • 대한전자공학회논문지SD
    • /
    • 제43권10호
    • /
    • pp.22-27
    • /
    • 2006
  • 본 논문에서는 능동형 센서와 연결된 카메라에서 얻어진 깊이 정보와 칼라 영상으로부터 컴퓨터형성 홀로그램을 제작하는 방법을 제안하였다. CGH 생성을 위해 컴퓨터그래픽 모델을 사용하는 기존의 홀로그래픽 디스플레이 시스템과는 달리, 카메라로 획득되는 각 물체의 칼라 정보 뿐 아니라 깊이 정보를 포함하는 카메라의 실사 영상을 사용하였다. 이 과정은 실사 물체로부터 깊이가 포함된 영상정보를 획득하는 단계와 깊이 정보로부터 추출된 3D 정보를 이용하여 CGH를 생성하는 두 가지 단계로 구성되어 있다. 또한, 홀로그래픽 디스플레이 시스템을 구성하여 제작된 CGH를 디스플레이 하였다. 실험 시스템에서는 1408X1050의 해상도와 10.4um의 픽셀 크기를 갖는 반사형 LCD 패널을 사용하여 CGH로부터 영상을 재생하였다.

RGB-Depth 카메라를 활용한 유체 표면의 거동 계측분석 (RGB-Depth Camera for Dynamic Measurement of Liquid Sloshing)

  • 김준희;유세웅;민경원
    • 한국전산구조공학회논문집
    • /
    • 제32권1호
    • /
    • pp.29-35
    • /
    • 2019
  • 본 논문에서는 건축물 진동저감장치에 적용되는 액체감쇠기 내 유체 자유표면의 동적 거동 계측을 위해 저가형 RGB-depth 센서인 Microsoft사 $Kinect^{(R)}$ v2의 활용과 계측시스템을 구축하는 방법을 제안하였다. $Kinect^{(R)}$ v2의 성능검토 및 실효성 확인, SDK(software development kit)를 사용한 실시간 모니터링, 3D 공간상에서 유체의 표면 정보 취득, 기존 비디오 센싱기법과의 비교를 통해 본 연구에서 제안한 유체의 동적 거동 계측 시스템의 정확성과 우수성을 검증하였다. 제안된 계측시스템을 활용하여 소형 수조 내 액체에 대한 동적 거동 정밀계측을 수행하였으며, 이를 바탕으로 광범위한 가진입력에 대한 유체 자유표면의 동적 거동 특징을 확인하였다. 본 연구의 결과를 바탕으로 RGB-depth센서의 건축물 진동저감 적용을 통해 정밀한 모니터링 시스템을 구축하고 최적화된 액체감쇠기의 설계 및 운용을 기대할 수 있다.

Markerless camera pose estimation framework utilizing construction material with standardized specification

  • Harim Kim;Heejae Ahn;Sebeen Yoon;Taehoon Kim;Thomas H.-K. Kang;Young K. Ju;Minju Kim;Hunhee Cho
    • Computers and Concrete
    • /
    • 제33권5호
    • /
    • pp.535-544
    • /
    • 2024
  • In the rapidly advancing landscape of computer vision (CV) technology, there is a burgeoning interest in its integration with the construction industry. Camera calibration is the process of deriving intrinsic and extrinsic parameters that affect when the coordinates of the 3D real world are projected onto the 2D plane, where the intrinsic parameters are internal factors of the camera, and extrinsic parameters are external factors such as the position and rotation of the camera. Camera pose estimation or extrinsic calibration, which estimates extrinsic parameters, is essential information for CV application at construction since it can be used for indoor navigation of construction robots and field monitoring by restoring depth information. Traditionally, camera pose estimation methods for cameras relied on target objects such as markers or patterns. However, these methods, which are marker- or pattern-based, are often time-consuming due to the requirement of installing a target object for estimation. As a solution to this challenge, this study introduces a novel framework that facilitates camera pose estimation using standardized materials found commonly in construction sites, such as concrete forms. The proposed framework obtains 3D real-world coordinates by referring to construction materials with certain specifications, extracts the 2D coordinates of the corresponding image plane through keypoint detection, and derives the camera's coordinate through the perspective-n-point (PnP) method which derives the extrinsic parameters by matching 3D and 2D coordinate pairs. This framework presents a substantial advancement as it streamlines the extrinsic calibration process, thereby potentially enhancing the efficiency of CV technology application and data collection at construction sites. This approach holds promise for expediting and optimizing various construction-related tasks by automating and simplifying the calibration procedure.

자율 이동로봇의 경로추정을 위한 적응적 공간좌표 검출 기법 (Adaptive Spatial Coordinates Detection Scheme for Path-Planning of Autonomous Mobile Robot)

  • 이정석;고정환
    • 전기학회논문지P
    • /
    • 제55권2호
    • /
    • pp.103-109
    • /
    • 2006
  • In this paper, the detection scheme of the spatial coordinates based on stereo camera for a intelligent path planning of an automatic mobile robot is proposed. In the proposed system, face area of a moving person is detected from a left image among the stereo image pairs by using the YCbCr color model and its center coordinates are computed by using the centroid method and then using these data, the stereo camera embedded on the mobile robot can be controlled for tracking the moving target in real-time. Moreover, using the disparity mad obtained from the left and right images captured by the tracking-controlled stereo camera system and the perspective transformation between a 3-D scene. and an image plane, depth information can be detected. Finally, based-on the analysis of these calculated coordinates, a mobile robot system is derived as a intelligent path planning and a estimation.

Depth Perception using A Parallel-Axis Stereoscopic Camera Rig

  • Ramesh, Rohit;Shin, Heung-Sub;Jeong, Shin-Il;Chung, Wan-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.147-148
    • /
    • 2010
  • Recently, advancement in the visual technology has lead to the further development of the three dimensional (3D) imaging systems. The visual perception to view a pair of images simultaneously, is a crucial factor to build a stereoscopic 3D image. In this paper, we present the depth cues between the intensities of the two images when viewing with both eyes. Due to this stereoscopic effect, objects at different distances from the eyes differ in their horizontal positions, giving the depth cue of horizontal disparity. By simple image processing technique, we also present the binocular disparity map between the two images. A median filter has been used to filter out all the noises occurring in the disparity map image.

  • PDF