• Title/Summary/Keyword: 3D depth

Search Result 2,598, Processing Time 0.035 seconds

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

Motion Depth Generation Using MHI for 3D Video Conversion (3D 동영상 변환을 위한 MHI 기반 모션 깊이맵 생성)

  • Kim, Won Hoi;Gil, Jong In;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-437
    • /
    • 2017
  • 2D-to-3D conversion technology has been studied over past decades and integrated to commercial 3D displays and 3DTVs. Generally, depth cues extracted from a static image is used for generating a depth map followed by DIBR (Depth Image Based Rendering) for producing a stereoscopic image. Further, motion is also an important cue for depth estimation and is estimated by block-based motion estimation, optical flow and so forth. This papers proposes a new method for motion depth generation using Motion History Image (MHI) and evaluates the feasiblity of the MHI utilization. In the experiments, the proposed method was performed on eight video clips with a variety of motion classes. From a qualitative test on motion depth maps as well as the comparison of the processing time, we validated the feasibility of the proposed method.

3D Printing Based Patient-specific Orbital Implant Design and Production by Using A Depth Image (깊이 영상을 이용한 3D 프린팅 기반 환자 맞춤형 안와 임플란트의 설계 및 제작)

  • Seo, Udeok;Kim, Ku-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.903-914
    • /
    • 2020
  • In this paper, we present a novel algorithm to generate a 3D model of patient-specific orbital implant, which is finally produced by the 3D printer. Given CT (computed tomography) scan data of the defective orbital wall or floor, we compose the depth image of the defect site by using the depth buffering, which is a computer graphics technology. From the depth image, we compute the 3D surface which fills the broken part by interpolating the points around the broken part. By thickening the 3D surface, we get the 3D volume mesh of the orbital implant. Our algorithm generates the patient-specific orbital implant whose shape is accurately coincident to the broken part of the orbit. It provides the significant time efficiency for manufacturing the implant with supporting high user convenience.

2D-to-3D Conversion System using Depth Map Enhancement

  • Chen, Ju-Chin;Huang, Meng-yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1159-1181
    • /
    • 2016
  • This study introduces an image-based 2D-to-3D conversion system that provides significant stereoscopic visual effects for humans. The linear and atmospheric perspective cues that compensate each other are employed to estimate depth information. Rather than retrieving a precise depth value for pixels from the depth cues, a direction angle of the image is estimated and then the depth gradient, in accordance with the direction angle, is integrated with superpixels to obtain the depth map. However, stereoscopic effects of synthesized views obtained from this depth map are limited and dissatisfy viewers. To obtain impressive visual effects, the viewer's main focus is considered, and thus salient object detection is performed to explore the significance region for visual attention. Then, the depth map is refined by locally modifying the depth values within the significance region. The refinement process not only maintains global depth consistency by correcting non-uniform depth values but also enhances the visual stereoscopic effect. Experimental results show that in subjective evaluation, the subjectively evaluated degree of satisfaction with the proposed method is approximately 7% greater than both existing commercial conversion software and state-of-the-art approach.

Distance measurement using stereo camera and 3D implementation with 3D display devices

  • Song, Hyok;Bae, Jin-Woo;Choi, Jong-Soo;Choi, Byeong-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1504-1507
    • /
    • 2007
  • Depth data for is very important data for 3D display. Disparity and depth data makes users to feel 3D effect. We used stereo camera to measure depth and made fast algorithm to get in real time. This vision system can be substituted for expensive laser system.

  • PDF

Multiple Color and ToF Camera System for 3D Contents Generation

  • Ho, Yo-Sung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.175-182
    • /
    • 2017
  • In this paper, we present a multi-depth generation method using a time-of-flight (ToF) fusion camera system. Multi-view color cameras in the parallel type and ToF depth sensors are used for 3D scene capturing. Although each ToF depth sensor can measure the depth information of the scene in real-time, it has several problems to overcome. Therefore, after we capture low-resolution depth images by ToF depth sensors, we perform a post-processing to solve the problems. Then, the depth information of the depth sensor is warped to color image positions and used as initial disparity values. In addition, the warped depth data is used to generate a depth-discontinuity map for efficient stereo matching. By applying the stereo matching using belief propagation with the depth-discontinuity map and the initial disparity information, we have obtained more accurate and stable multi-view disparity maps in reduced time.

An Analysis of Recovery Rate and a Change of Depth Recognition After Watching 3D Videos (3D 영상 시청 시 콘텐츠에 따른 깊이 인지 변화와 회복도 분석)

  • Kim, Yong-Woo;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.88-96
    • /
    • 2015
  • The recent increase in the production of 3D contents allowed viewers to experience various 3D contents. However, some of the viewers did not experience 3D depth well. Several researches were done in past to measure viewers' 3D depth perception, but these researches were done with certain limitations. In this paper, we measured viewers' 3D depth perception and recovery rate in relation with the changes in binocular disparities, saturation, and brightness values after subjects' watching 2D/3D contents. The results showed that when viewers watched the 3D content with positive binocular disparities for 42 minutes, viewers felt that the object seemed to have moved further forward than it was before; with 3D content with negative binocular disparities, viewers felt that the object seemed to be moved backwards. We found that the locational differences of the object in positive disparities were greater than those in the negative binocular disparities. The recovery rate was computed by comparing two measured values of before and after watching 3D contents for 30 minutes. On average, after 30-minute break, viewers showed roughly 50 % of recovery rate.

3-DTIP: 3-D Stereoscopic Tour-Into-Picture Based on Depth Map (3-DTIP: 깊이 데이터 기반 3차원 입체 TIP)

  • Jo, Cheol-Yong;Kim, Je-Dong;Jeong, Da-Un;Gil, Jong-In;Lee, Kwang-Hoon;Kim, Man-Bae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.28-30
    • /
    • 2009
  • This paper describes a 3-DTIP(3-D Tour Into Picture) using depth map for a Korean classical painting being composed of persons and landscape. Unlike conventional TIP methods providing 2-D image or video, our proposed TIP can provide users with 3-D stereoscopic contents. Navigating inside a picture provides more realistic and immersive perception. The method firstly makes depth map. Input data consists of foreground object, background image, depth map, foreground mask. Firstly we separate foreground object and background, make each of their depth map. Background is decomposed into polygons and assigned depth value to each vertexes. Then a polygon is decomposed into many triangles. Gouraud shading is used to make a final depth map. Navigating into a picture uses OpenGL library. Our proposed method was tested on "Danopungjun" and "Muyigido" that are famous paintings made in Chosun Dynasty. The stereoscopic video was proved to deliver new 3-D perception better than 2-D video.

  • PDF

Fast Intra Mode Decision Algorithm for Depth Map Coding using Texture Information in 3D-AVC (3D-AVC에서 색상 영상 정보를 이용한 깊이 영상의 빠른 화면 내 예측 모드 결정 기법)

  • Kang, Jinmi;Chung, Kidong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.149-157
    • /
    • 2015
  • The 3D-AVC standard aims at improving coding efficiency by applying new techniques for utilizing intra, inter and view predictions. 3D video scenes are rendered with existing texture video and additional depth map. The depth map comes at the expense of increased computational complexity of the encoding process. For real-time applications, reducing the complexity of 3D-AVC is very important. In this paper, we present a fast intra mode decision algorithm to reduce the complexity burden in the 3D video system. The proposed algorithm uses similarity between texture video and depth map. The best intra prediction mode of the depth map is similar to that of the corresponding texture video. The early decision algorithm can be made on the intra prediction of depth map coding by using the coded intra mode of texture video. Adaptive threshold for early termination is also proposed. Experimental results show that the proposed algorithm saves the encoding time on average 29.7% without any significant loss in terms of the bit rate or PSNR value.

Foreground Extraction and Depth Map Creation Method based on Analyzing Focus/Defocus for 2D/3D Video Conversion (2D/3D 동영상 변환을 위한 초점/비초점 분석 기반의 전경 영역 추출과 깊이 정보 생성 기법)

  • Han, Hyun-Ho;Chung, Gye-Dong;Park, Young-Soo;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.243-248
    • /
    • 2013
  • In this paper, depth of foreground is analysed by focus and color analysis grouping for 2D/3D video conversion and depth of foreground progressing method is preposed by using focus and motion information. Candidate foreground image is generated by estimated movement of image focus information for extracting foreground from 2D video. Area of foreground is extracted by filling progress using color analysis on hole area of inner object existing candidate foreground image. Depth information is generated by analysing value of focus existing on actual frame for allocating depth at generated foreground area. Depth information is allocated by weighting motion information. Results of previous proposed algorithm is compared with proposed method from this paper for evaluating the quality of generated depth information.