
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, Mar. 2016                                          1159 
Copyright ⓒ2016 KSII 

2D-to-3D Conversion System using Depth 
Map Enhancement 

 
Ju-Chin Chen and Meng-yuan Huang 

Department of Computer Science and Information Engineering 
National Kaohsiung University of Applied Sciences, Kaohsiung, Kaohsiung, Taiwan, ROC 

[e-mail: jc.chen@cc.kuas.edu.tw] 
*Corresponding author: Ju-Chin Chen 

 
Received June 15, 2015; revised December 19, 2015; accepted January 10, 2016; 

 published March  31, 2016 
 

 

Abstract 
 

This study introduces an image-based 2D-to-3D conversion system that provides significant 
stereoscopic visual effects for humans. The linear and atmospheric perspective cues that 
compensate each other are employed to estimate depth information. Rather than retrieving a 
precise depth value for pixels from the depth cues, a direction angle of the image is estimated 
and then the depth gradient, in accordance with the direction angle, is integrated with 
superpixels to obtain the depth map. However, stereoscopic effects of synthesized views 
obtained from this depth map are limited and dissatisfy viewers. To obtain impressive visual 
effects, the viewer’s main focus is considered, and thus salient object detection is performed to 
explore the significance region for visual attention. Then, the depth map is refined by locally 
modifying the depth values within the significance region. The refinement process not only 
maintains global depth consistency by correcting non-uniform depth values but also enhances 
the visual stereoscopic effect. Experimental results show that in subjective evaluation, the 
subjectively evaluated degree of satisfaction with the proposed method is approximately 7% 
greater than both existing commercial conversion software and state-of-the-art approach. 
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1. Introduction 

Recently, 3D signal processing has attracted considerable attention in the field of computer 
vision. Compared with 2D displays, 3D displays provide a more realistic visual experience. 
Hence 3D display is regarded as the next revolution for many applications including the 
entertainment industry, multimedia systems, and broadcasting. For instance, since 2005, 
starting with Chicken Little, 3D movies have become popular, and have brought substantial 
business benefits. Box office receipts for Avatar amounted to over 25 billion dollars 
worldwide. Moreover, since 2010, many TV brands such as SONY, Panasonic, and Samsung 
have begun manufacturing 3D TVs for home theater systems.  

For 3D display, several approaches have been employed to obtain 3D content, including 
active depth sensing [1] and stereo vision recording [2]. Active depth sensing applies sensors 
such as structured light and time-of-flight sensors [3] to estimate depth information [1]. Stereo 
vision recording relies on multiple cameras to capture multiple views and estimate depth 
information using stereo matching [2]. However, these methods require additional complex 
devices and the 3D visual effect is limited to a home 3D TV because of minor disparities [4]. 
In addition, these methods are only suitable for new production. Reproducing 3D visual 
effects for existing 2D image/video data is difficult because manual editing of the depth 
information is time-consuming. The lack of high-quality 3D content has become a bottleneck 
for the growth in the 3D industry [4], [5]. Therefore, 2D-to-3D image/video conversion 
algorithms have been proposed in recent years that can be categorized into semi-automatic 
methods, which need user interactive operations [6-8] and fully-automatic methods, which 
output 3D contents without any user interactions [9-10]. In most semi-automatic 2D-to-3D 
conversion frameworks, a small number of video frames, i.e., key frames, of the video 
sequence are annotated with depth information by users, and the rest of the video frames, i.e., 
non-key frames, are converted to 3D automatically [5], [7-8]. In accordance with cognitive 
studies showing that the human visual system is sensitive to foreground objects, in [8], an 
interactive step was added for foreground depth refinement. Compared with fully-manual 
conversion systems, semi-automatic conversion methods can provide more reliable results 
than fully-automatic methods. However, human participation is impractical in many scenarios 
[5]. Therefore, fully-automatic 2D-to-3D conversion methods need to be developed.  

According to human depth perception mechanisms, several 2D-to-3D conversion 
techniques [1-2], [4], [9-14] have been proposed which mainly focus on recovering the depth 
map. Humans can integrate various depth cues to generate depth perception, including 
monocular depth cues such as motion, focus/defocus cues, and relative height/size cues, to 
perceive the relative distance of objects within a real scene and binocular depth cues from a 
visual system to realize the 3D location of an object [2], [14]. A survey of automatic 2D-to-3D 
systems and depth map generation can be found in [9]. In addition, there are a few software 
packages that can retrieve depth maps and provide automatic 2D-to-3D conversion, such as 
DDD’s TriDef 3D [15] and ArcSoft’s Media Converter [16]. However, the stereoscopic visual 
effect produced by these tools is not obvious because of limited information [10]. Recently, 
learning-based methods either based on inferring depth maps from extra images (data-driven 
approaches) [11], [13], [17] or estimating such maps with model learning [18-21] have 
attracted much attention. Given a large dataset consisting of either stereopairs [11] or image + 
depth pairs [13], [17], data-driven approaches infer the depth map of a 2D query by finding the 
most similar images in the dataset and fusing (or warping) corresponding depth maps for final 
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depth estimation. Note that instead of a general case, a domain-specific conversion system was 
developed in [11] to provide better results. Moreover, a supervised learning strategy, i.e., 
Markov random field [18-19] or deep learning [20-21], was used to learn the relation between 
3D structures and 2D image features. Rather than extracting low-level features such as texture 
and color as in [19], deep learning approaches require neither hand-crafted features nor 
assumptions about the semantic information of a scene.  

Overall, 2D-to-3D conversion problems face some challenges to generate pleasing 3D 
effects. First, depth values inside the same object need to be uniform [2]. Hence, 
pre-processing has to be performed by considering both color similarity and spatial distance to 
segment an input image into subregions [2]. The more complete (or detailed) the 
pre-processing results, the more uniform the depth values inside the object. Second, the depth 
relationships between all objects are considered [2]. In [14] and [22], the authors use motion 
parallax as the depth cue and integrate the depth information with the object grouping results. 
Third, the resulting 3D visual effect is often not sufficiently impressive for viewers because of 
minor disparities. Most conversion systems focus on generating precise depth values based on 
human depth perception, however, visual attention is ignored and it is an important factor for 
pleasing perception. Recently, visual attention models have been discussed in related research 
areas, such as photo quality assessment [23], region of interest [24-24], and saliency object 
detection [25-26], which all describe the elements of a visual scene that are likely to the attract 
attention of humans. For example, Sun et al. [23] proposed one visual attention model for 
constructing a face-sensitive saliency map and a rate of focused attention measurement was 
proposed for quality assessment. Based on the observation that humans pay more attention to 
those image regions that have contrast with their surroundings, Cheng et al. [25] proposed a 
regional contrast based saliency extraction algorithm, which can simultaneously consider 
global contrast differences and spatial coherence. Moreover, not only static information is 
explored, a dynamic attention model is proposed as well. Zhang et al. [26] learned the shifting 
path of human gaze, called the active graphlet path, to mimic the process of humans looking at 
one photo. According to the semantic significance the subregion of a photo is selected for 
photo cropping. 

In this study, we propose a single-image-based 2D-to-3D conversion system to solve the 
aforementioned problems. The main contribution to modification of the depth map comes 
from a fusing depth gradient estimation and salient object detection. These give an accurate 
depth gradient while enhancing visual stereoscopic effect. Instead of estimating depth values 
from the depth cues directly, the perspective model and the atmospheric scattering model are 
first employed to estimate the captured direction from five hypotheses [1]. To avoid 
inconsistent depth assignment for the same object, the minimum-spanning-tree (MST) is 
applied to group pixels having similar colors and spatial locality, to facilitate object 
segmentation [1]. Hence, the initial depth map can be generated by integrating the depth 
gradient in accordance with the hypothesis and segmentation results. Furthermore, to improve 
the visual effects, salient region detection based on graph-cut regions is used to generate a 
binary salient map. Then the depth map for the salient region is locally modified within this 
region. Finally, depth-image-based rendering (DIBR) uses backward mapping and bilinear 
interpolation to generate a left and right stereoscopic image pair. By refining the depth map, 
we can enhance the 3D visual perception for humans on the generated stereoscopic image pair. 

The remainder of this paper is organized as follows. In Section 2 we review the current 
2D-to-3D conversion system and depth estimation approaches. The overview of the proposed 
system is introduced in Section 3, and the detail of each system module is presented in Section 
4. Section 5 describes a subjective perception study performed to evaluate the stereoscopic 
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effect of the proposed method and compares it with those of state-of-the-art methods. We draw 
conclusions and present discussion in Section 6. 

2. Related Work 
Generation of 3D image/video from 2D image/video has been studied for many years [1-2], 
[4], [9-14], [28]. These approaches focus on estimating depth information either from a single 
image or multiple images and filling holes in the synthesis process of stereoscopic views. Tam 
et al. [13] transferred one input image into a YCbCr color space and then the values of the Cr 
channel were used as a depth map. Han et al. [29] estimated a depth map based on both 
geometric and texture cues from a single image. By detecting line features, the geometric cue, 
i.e., the vanishing point, was used to generate the initial depth map. Then the texture cue 
obtained from the segmentation results was used to refine the depth map for an accurate result. 
However, the uniformity of the depth value within the same object is not guaranteed with the 
obtained texture cue. Jung et al. [30] used gradient and linear perspective cues for depth map 
estimation. Rather than estimate a depth value from the depth cue. Cheng et al. [2] proposed a 
five depth gradient hypotheses for depth assignment. Before assigning depth values, the MST 
is applied to group pixels based on their color and spatial locality. Then according to a depth 
hypothesis, a relative depth value is assigned to each region. To remove blocky artifacts, cross 
bilateral filtering is applied to enhance the visual comfort. Note that this work is the first to 
considering both monocular and binocular cues. Finally, the depth map is fed into DIBR to 
synthesize the stereoscopic image pair. On the other hand, to obtain more reliable results, 
Guttmann et al. [7] proposed a semi-automatic approach with user interaction. Although the 
system can achieve good results, many complex processes are needed to obtain the final depth 
map. Thus, to reduce the computation complexity, in [31], a hybrid paradigm is proposed that 
random walks [32] and graph cuts [33] are used to generate a final cohesive depth map. Via 
user-defined strokes, which are seen as a rough estimation of the depth values, the proposed 
system can estimate the depth values for the rest of the image. Compared with one single 
image input, a video can provide more depth cues for depth map generation. Lin et al. [34] 
proposed a 2D-to-3D video conversion scheme for MPEG videos. Because the memory size 
for video is massive, the motion cue is extracted directly from the MPEG bit stream to reduce 
computation complexity. The other depth cues, such as atmospheric perspective, texture 
gradient, linear perspective, and relative height, are obtained from decoded frames. Kim et al. 
[35] proposed an accurate depth map generation scheme. After performing MRF-based 
contour tracking, the graph-cut segmentation is applied to refine the contour to repair tracking 
errors in the complex background. However, most video conversion systems are off-line 
processes due to manual interactions or complex computation. Tsai et al. [1] proposed a 
real-time 2D-to-3D video conversion system that is implemented on both software and 
hardware for optimization. Using unified streaming dataflow, multi-thread schedule 
synchronization, and CUDA acceleration, a 1920 × 1080p at 30 fps video conversion is 
achieved.   

Among these 2D-to-3D conversion studies, depth estimation is a key technique that can 
affect the quality of synthesized virtual images. However, depth estimation from a single 
image is an ill-posed problem, since the true 3D structure is ambiguous in that a given image 
might be generated from an infinite number of 3D objects [18]. Without prior knowledge of 
the scene, depth estimation cannot be carried out. However, this task is not difficult for human 
beings who can infer a 3D structure via a stereo vision system and prior knowledge. Saxena et 
al. [18-19] summarized the human visual cues for 3D scene understanding into four categories: 
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monocular, stereo, motion parallax, and focus cues. Therefore, depth estimation algorithms 
are developed based on these visual cues for both single-image-based and 
multiple-image-based methods. The former methods estimate the depth map based on 
monocular cues that can be extracted from one image such as image classification results [36], 
geometric perspective [37], texture gradient [34], atmospheric perspective [38], and relative 
heights [39]. The latter methods, developed based on stereo cues, motion parallax, and focus 
cues [40], require more than one image that can be acquired from multiple cameras. The stereo 
cue takes the disparity variance to estimate an object’s distance that is inversely proportional 
to the distance of the object from cameras. In other words, a distant object gets smaller 
disparities than a close object. Motion parallax [41] is based on the fact that the observed 
motion difference of a close object is larger than that of a distant object if they travel with the 
same velocity, and thus one can estimate the relative distances in a scene. However, if the 
object or camera is static, depth cannot be estimated. Additionally, motion information and 
object segmentation are assumed to be known, and hence, they are suitable only for images 
with simple backgrounds. In this study, we focus on visual perception enhancement for single 
images; more in-depth discussion concerning multiple-image-based methods has been 
discussed elsewhere [2], [41].  

Assuming objects with uniform color or texture, algorithms of shape from shading [42] and 
shape from texture [43], are developed. However, the algorithms are not capable of handling 
complex images [18]. Rather than relying on the image size of specific objects, by studying the 
Fourier spectrum for different scenes, Torralba and Oliva [44] estimates absolute mean depth 
for the scene by recognizing the structure properties in the image. In [2], the camera direction 
is estimated according to the location of the vanishing point. The limitation of this method is 
that the depth estimation fails if lines are not detected in the image. Similar to the linear 
perspective method, the texture gradient estimates depth according to the cue that distant 
objects look smaller and more compact [34]. However, these methods are only suitable for 
scenes with regular or similar objects such as flowers. Jung et al. [39] used the relative height 
of objects to assign depth maps. For scenes with similar objects, the objects observed in the 
upper parts of the images are relatively distant. Subsequently, the distance between the objects 
and line boundaries can be used to estimate the depth for each pixel. However, for this 
estimation, more complicated preprocessing is required, such as object segmentation or salient 
object detection. Su et al. [38] used motion difference to first segment the image into 
foreground and background, and later, linear perspective, atmospheric perspective, and 
relative horizontal height results were fused to estimate depth information. In [37], the texture 
gradient was meticulously applied to estimate scene complexity, and the combination weights 
were estimated according to the least square error. Then, the depth information derived from 
motion difference, atmospheric perspective, and texture gradient results were appropriately 
fused to obtain reliable results.  

On the other hand, instead of developing algorithms from heuristic assumptions, Saxena 
et al. [18] proposed a learning-based approach to deduce the 3D structure from a training set of 
monocular images that consisted of unstructured indoor and outdoor views with ground-truth 
depth maps. The authors observed that local features are not sufficient for depth estimation, 
and thus a hierarchical, multi-scale Markov random field (MRF) was used to model not only 
local features but the relationship between different parts of the image. Furthermore, instead of 
dividing the image into small rectangular patches, the authors modified their work by applying 
image segmentation to obtain superpixels to satisfy the planar assumption [19] for reliable 
depth estimation. By observing the significant progress in image classification [45] and object 
detection [46] brought by deep learning algorithms, learning-based approaches based on deep 
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convolutional neural networks (CNNs) for single-image depth estimation have rapidly 
developed in recent years. In 2014, Tian et al. [47] proposed a depth inference model relying 
on a CNN that contained several convolutional and pooling layers as the basic architecture as 
well as a linear regressor as the last layer for depth value inference. Compared with 
graphical-model-based methods [18-19], the proposed method requires neither engineered 
features nor assumptions about the semantic information of a scene. It can provide results that 
are competitive with [19] in terms of low computational complexity in a test time. In addition, 
Eigen et al. [20] trained two CNNs, i.e., the coarse- and fine-scale networks, for depth map 
prediction. The coarse-scale network first estimates the global structure of a scene, and the 
fine-scale network edits coarse prediction results to align with local details. Note that the depth 
map is directly estimated by the CNN and a large amount of labeled data must be collected so 
that networks can be trained with all possible layouts [48]. Unlike the method of directly 
estimating depth values presented in [20], [47], Liu et al. [21], [48] proposed a deep 
convolutional neural field model to formulate the depth estimation as a deep continuous 
conditional random field (CRF) learning problem in which CRF is explicitly used to model the 
relations of neighboring superpixles, and potential functions are learned in a unified CNN 
framework. This is a prior work to explore CNN for structured learning problem with a 
graphical model. Because the translation invariance is preserved, no superpixel coordinate 
needs to be encoded, and hence, compared with [20], the methods in [21], [48] can train a 
network using a standard dataset to obtain competitive performance without additional 
training data or any geometric prior. The depth of a new test image can be estimated via the 
MAP inference with a closed-form solution. According to the experimental results, 
deep-learning based methods [21], [48] can outperform state-of-the-art results [17], [20], [49] 
for both indoor and outdoor scene datasets. 

Stereo image synthesis is another important issue for 2D-to-3D conversion. In the field of 
computer vision, virtual view synthesis can be roughly categorized into model-based 
rendering (MBR) and image-based rendering (IBR) [50]. MBR needs to construct a 3D model 
to render a virtual view [51], whereas IBR does not require 3D details of a scene in the 
generation process. IBR aims at synthesizing virtual views from images even when no 
geometric information is given. Famous techniques such as light field [52] and lumigraph [53] 
have been proposed; the former interprets inputted images as 2D slices of a 4D function to 
characterize the flow of light in a static scene, whereas the latter uses a subset of plenoptic 
functions to describe the flow of light in all directions. In recent years, some warping-based 
methods that do not require depth maps have formulated the render process as an optimization 
problem [54]. In addition, the depth-image-based rendering (DIBR) proposed in advanced 
three-dimensional television system technologies [55] can generate two views using a single 
2D image as well as its corresponding depth image, which gives a depth value for each pixel. 
Because of the attractive features of DBR, such as its efficient computation ability, most 
2D-to-3D conversion systems apply DIBR to synthesize disparate images. DIBR mainly 
consists of three processes: disparity computation, pixel shifting, and hole filling. However, 
two problems occurred in the synthesized image, which are termed occlusion and disocclusion 
[4], [56]. Occlusion means that two different pixels have warped to the same location in the 
synthesized images, and this can be solved by generating the image using pixels closer to the 
camera [4]. However, disocclusion is more difficult to solve because it is caused by occlusion 
in the original input video. As a result, no information can be provided to generate these pixels 
in the synthesized images, referred as a hole. Thus, a hole-filling process [4], [57-58] such as 
bilinear interpolation or preprocessing the depth map is required to reduce the net area of holes 
in the image. For example, Wang et al. [56] proposed an asymmetric edge adaptive filter 
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(AEAF), inspired by the bilateral filter, for depth map generation and hole filling. Via 
asymmetric smoothing of depth maps, AEAF can fill the area of holes in synthesized images to 
reduce artifacts and distortions and preserve object edges simultaneously. 

3. Overview of the proposed 2D-to-3D conversion system 
Generally, the main goal of 2D-to-3D conversion systems is to generate a stereoscopic image 
pair of a given 2D image based on an estimated depth map. Fig. 1 presents a flowchart of the 
proposed system. As shown in the figure, to estimate the scene depth from a single image, 
linear and atmospheric perspective cues are retrieved from a given input image via line 
detection and blurred degree estimation, respectively. In the process, the capturing direction is 
defined based on the five hypothetical directions [1]. To cope with inconsistent depth 
assignment for the same object, the MST is applied for object segmentation [1]. Hence, the 
initial depth map can be generated by fusing the depth gradient and segmentation results. For 
most 3D videos, the stereoscopic effect for human perception is limited. To enhance visual 
perception, the salient region, which represents the main visual attention of the viewer, is 
further evaluated. Then the depth assignment can then be refined for the salient region and its 
surrounding pixels. Note that incorporation of the salient region can not only enhance the 
stereoscopic degree but also correct the depth consistency of an object. Finally, using the input 
image and the refined depth map, a stereoscopic image pair can be synthesized via DIBR and a 
hole filling algorithm performed to refine the results. 

4. 2D-to-3D Conversion System with Depth Map Enhancement 

As shown in Fig. 1, the proposed system commences with depth gradient estimation. After 
estimating the depth gradient and segmenting objects, the initial depth map is generated. By 
integrating the salient region, the depth map is further refined to enhance the stereoscopic 
effect. The approach employed in our study involves not only enhancement of visual 
perception but also correction of the depth map for consistency within objects. The details of 
the system are discussed in the following subsections. 

Fig. 1. System flowchart. 
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4.1 Depth Gradient Estimation 
To recover depth information from an input image, two cues are used to estimate the scene 
depth: linear and atmospheric perspective cues. The former is based on the perspective model 
of human visual perception, whereas the latter is based on the atmospheric scattering model 
wherein far objects are blurred by particles in the atmosphere. 

For evaluating static or moving scenes, five directions representing the viewer’s position 
relative to a scene can be roughly classified as left to right, right to left, bottom to top, 
left-bottom to right-top, and right-bottom to left-top. According to the perspective property, 
the Hough transformation is first applied to detect lines in the image. Then five hypothetical 
directions are defined according to the position of the vanishing point to represent the 
capturing direction [1] with a direction angle based on the perspective cue pθ . Fig. 2 
illustrates the divided regions of an image and the corresponding hypothetical directions. For 
example, if the vanishing point is in region IV, the hypothesis is set to Type 4, the direction 
angle is estimated as right to left, and °= 135pθ . We note here that if the location of the 
vanishing point is inaccurate because of inconsistent line detection results or no line detection, 
the default hypothesis is Type 3 in which is the most likely capturing direction. The five 
hypothetical directions and their corresponding depth gradients are summarized in Fig. 3. 

Fig. 2. Divided regions of an image that correspond to the five hypothetical directions 
representative of the capturing direction. 

Fig. 3.  Five hypothetical directions and their corresponding depth gradients. 
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The perspective cue works well when the scene contains objects with parallel lines, for 
example, roads and buildings. To generate a convincing depth map, the atmospheric cue [34] 
is also applied. The light reflected from a far object is scattered by particles in the atmosphere; 
thus, distant objects appear blurred, and close objects appear sharper and with higher contrast. 
Hence, by dividing the input image into non-overlapping 33×  blocks, the contrast value can 
be defined as [34] 
 

)()(
)()(),(

kbka
kbkavuC

+
−

= ,                                                      (1) 

where ),( vuC is the contrast value for each pixel (u,v) in the k-th block, and )(ka and )(kb  are 
the maximum and minimum gray values, respectively, in the k-th block. Larger ),( vuC values 
represent scenes with higher contrast, i.e., an object within this block is closer to the viewer. 
Fig. 4 shows an example of this method; the darker pixels represent the region distant from the 
viewer. Then a binary result is obtained by setting a threshold r and the number of black pixels 
M(k) for the k-th block is calculated as follows: 
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According to the defined hypothetical directions, the direction angle based on the atmospheric 
cue aθ can be estimated from this result. As shown in Fig. 4(d), regions A, B, and C have 
more black pixels, and thus, the hypothesis is inferred as being Type 3. To obtain more a 
precise depth gradient, the direction angles pθ  and aθ estimated based on the perspective and 
atmospheric cues, respectively, are fused. However, three relationships between these values 
can be obtained: 

A. The two estimated angles are consistent, ap θθ = ; 

B. The difference between the two angles is smaller than 90°, i.e., °≤− 90ap θθ ;
 

C. The difference between the two angles is larger than 90°, i.e., the estimated results are 
contradictory. 

Therefore, the final depth gradient is obtained as 
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Fig. 4. Depth information from the atmospheric cue: (a) input image, (b) contrast value C(u,v) (white 
regions have a larger contrast value), (c) binary result, and (d) ratio of the number of black pixels 
relative to the number of pixels in each block. 

(d) (c) (b) (a) 
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4.2 Initial Depth Map Generation 
Note that the depth gradient is estimated for a given image while ignoring image content, and 
this results in the possibility that one planar object can be assigned with various depth values. 
For example, in Fig. 1, although the depth structure of a person is not planar, for the viewer it 
makes sense that the person with a distance to camera would be represented with disparity 
values that correspond to a planar structure. Hence, to generate a consistent depth map, an 
input image is segmented by MST [1]. An image is represented by a graph containing vertices 
and edge links, where a vertex of the graph is composed of 4 by 4 pixels and each edge link 
between vertices is measured by the difference of mean values of neighboring blocks.  

After obtaining the image depth gradient and segmented regions, the initial depth map can 
be generated by assigning the depth value for each segmented region (object) R by [1]: 
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where W and H are the image width and height, respectively, x and y are pixel coordinates, 
size(R) is the number of pixels in region R, α  is the left-to-right weight, defined as 

cd /)cos(θ , β is the bottom-to-top weight, defined as cd /)sin(θ and c is )sin()cos( dd θθ + . 
Note that each segmented object R is assigned the same depth value and the larger value of 
Depth(R) indicates that the object is closer to the viewer. 

4.3 Salient Object Detection 
To enhance stereoscopic effect, the image region serving as the viewer’s primary focus must 
be evaluated. According to studies in neuroscience and psychology, high contrast and moving 
objects easily attract a viewer’s focus. In other words, viewers will most readily focus on 
pixels with a color different from their surrounding pixels or those belonging to moving 
objects. This region or object of focus has been named the salient region or the salient object, 
respectively, in the computer vision field [24-25]. In this study, we briefly discuss the 
previously described algorithm [25] which we apply for salient object detection.  

For a given input image, the image is first segmented into regions [60]. Then, for each 
region A, a color histogram is built in RGB color space. To reduce computational complexity, 
each color channel is quantized into 12 bins, and thus, the size of the histogram is 123. After 
obtaining the statistical information for each region, the salient value for region pA  can be 
defined as [25] 

                                      ∑= ≠ qp AA qpqp AADAwAS ),()()( ,                                      (5) 

where )( qAw  is the number of pixels in region q, and the color distance ),( qp AAD  between 

pA  and qA  is calculated by, ),()()(),( ,,,1 1 , jqipjq
n
i

n
j ipqp hhEhThTAAD p q∑ ∑= ==  where pn  and 

qn  are the respective number of bins, )( ,iphT  is the probability of obtaining color i in region 

p, )( , jqhT is the probability of obtaining color j in region q, and ),( ,, jqip hhE  is the 

Euclidean distance of color in ∗∗∗ baL color space. Note that the salient value represents 
contrast with the neighboring region. 

Moreover, high contrast between neighboring regions will be more readily noticed for 
regions closer to the viewer. The spatial information is therefore incorporated and the salient 
value is reformulated as 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016                                    1169 

∑ ≠ −=
qp AA qpq

S

qpS
p AADAw

AAD
AS ),()()

),(
exp()( 2σ

,                       (6) 

where ),( qpS AAD  is the Euclidean distance between regions pA  and qA , and Sσ controls 
the weight of the spatial information. Fig. 5(b) shows the salient map and Fig. 5(c) shows the 
detected salient object segmented by GrabCut [25], [60]. 

4.4 Depth Map Refinement for Stereoscopic Effect Enhancement 
After obtaining the salient object, the next consecutive process is to refine the depth map. 
According to the binary result of salient object detection, the pixels of the initial depth map can 
be classified into non-salient and salient regions. If the pixel belongs to the non-salient region, 
its depth value (Eq. (4)) is not modified. On the other hand, if it belongs to the salient region, 
the depth value is modified and the consistency with other pixels within the same segmented 
object must be preserved. Thus, all the pixels within the salient region will be reset to the 
maximum depth value within the salient region. Therefore, the modified depth value F(x,y) for 
each pixel can be formulated as 
 

                  ),(max),(
),,(),()],(1)[,(),(

1),(
yxGyxV   where

yxSyxVyxSyxGyxF

yxS

R

=
=

+−=
                          (7) 

and ),( yxGR  is the assigned depth value for the pixel (x,y) in the corresponding region R (Eq. 
(4)), }1,0{),( ∈yxS is the binary salient map from GrabCut, and ),( yxV is the maximum 
depth gradient value assigned within the salient region. Fig. 6 shows the refinement results 
based on Fig. 5. Object segmentation creates depth values that are consistent with the region 
containing the woman’s body; however, differences between the results obtained from the 
salient map are observed for the face region. After modifying the depth values, the depth 
values within the woman’s overall image are more consistent. 

Fig. 5. Example of salient object detection: (a) input image, (b) salient map, and (c) segmented object by GrabCut [60]. 
(a) (b) (c) 

Fig. 6. Examples of (a) type 3 depth gradient, (b) initial depth map, and (c) refined depth map. 
(a) (b) (c) 



1170                                                                               Chen et al.: 2D-to-3D Conversion System using Depth Map Enhancement 

4.5 Stereoscopic Images Synthesis 

Based on the refined depth map, DIBR [55] is applied to generate a left and right stereoscopic 
image pair, by 

,
2

2

Z
ftxx

Z
ftxx

x
cright

x
cleft

−=

+=
                                                  (8) 

where leftx , rightx , and cx  are the pixel coordinates in the left, right, and input image, 
respectively, xt  is the disparity between two eyes (generally 6.5 cm), f is the focus length, and 
Z is the depth value. Forward mapping is a method to synthesize images by setting the pixel 
value of leftx  and rightx , respectively, and Fig. 7  shows the results of forward mapping. It 
can be observed that large holes (black regions) surrounding the pixels near the frontal chesses. 
Note the presence of holes at the left areas of chesses in the left image (Fig. 7(b)) and at the 
right areas of chesses in the right image (Fig. 7(c)). This condition is referred to as the 
disocclusion problem [4]. In order to fill the holes, backward mapping with bilinear 
interpolation is applied. Each pixel coordinate in the left and right image is mapped back to the 
input image by Eq. (8) to get the reference pixel clx′ and crx′ , respectively. Fig. 7(d) and Fig. 
7(e) shows the hole filling results. 
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4.6 Computational Complexity Analysis  
The proposed system consists of four main steps: depth gradient estimation, salient object 
detection, depth map refinement, and stereoscopic image synthesis by DIBR. Depth gradient 
estimation consists of retrieving linear and atmospheric perspective cues. In addition, MST 
process is performed before generating the initial depth map.  The complexity of line detection 
for the linear perspective cue is )( 2nO , where n is the number of edge points in the image. 
The complexity of retrieving an atmospheric cue is )(mO , where HWm ×= , W and H are 

the width and height of the image, respectively, and the complexity for MST is )( 55 NEeO −  

[2]. Here, N and E are the numbers of vertices and edges, respectively. In our study, N is 
16
m  

(b) (c) 

Fig. 7. (a) Input images; (b) and (c) are the left and right images synthesized by forward mapping, 
respectively; (d) and (e) are left and right images synthesized by backward mapping using bilinear 
interpolation, respectively. 

(a) (d) (e) 
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and E is 
4

2 HWm −−  when a 4 4× pixel block is used for MST. In addition, according to [25], 

the time complexity of salient object detection is )log( mmO  if image segmentation [59] is 
applied to obtain a better saliency map. Contrarily, if the image segmentation is discarded, the 
time complexity reduces to )(mO . For the proposed method, the complexity of the last two 
steps, i.e., depth map refinement and stereoscopic image synthesis by DIBR, is )(mO . Overall, 

the computational complexity of the proposed method is )log( mmeO m + . In addition, we 
measure the running time on images with 400 300×  pixels. On average, time costs for two 
main processes, i.e., depth gradient estimation and salient object detection, are 1.2s and 1.5s, 
respectively; when inputting a 2D image, the system takes 2.84s to obtain stereoscopic views. 
The experiments are performed on a PC with Intel CPU i7-4470 at 3.4 GHz with 4 cores and 
16 GB memory. 
 
Table 1. Six types of images with simple or complicated backgrounds and the type of presence of the 

main object. 

 Background Complexity  
Simple  Complicated 

Presence of 
main object 

Single 
main 
object 

  

Multiple 
objects 

  

No main 
object 

  

5. Experimental Results 

In this section, the test database and evaluation mechanism is introduced. The results of depth 
gradient estimation by the proposed method are then analyzed, and the refined depth maps are 
compared with existing approaches. To demonstrate the improved stereoscopic effect in our 
study, the proposed method were compared with other synthesized image pairs generated 
using the depth map estimated by MST segmentation alone, denoted as DG_MST, and the 
binary depth map of the salient region, denoted as DG_SALIENT. In addition, a comparison of 
the results produced by commercial software and those by the state-of-the-art method is 
provided. 

5.1 Dataset Collection 
To analyze the stereoscopic effects of the proposed method, 90 test images were collected 
from the Internet consisting of images having two levels of background complexity and three 
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types of main object presence. Definitions of image types and corresponding examples are 
listed in Table 1, and the corresponding number of images for each type is listed in Table 2.   
 

Table 2. Number of images for each image type listed in Table 1. 

 Background Complexity  
Simple  Complicated 

Presence 
of main 
object 

Single main object 28 16 

Multiple objects 19 7 
No main object 10 10 

5.2 Analysis of Depth Gradient Estimation 
The linear perspective depends on the presence of lines in an image and the resulting 
estimation of the vanishing point. However, the absence of a line or inconsistent line detection 
will result in an incorrect location of the vanishing point and an inaccurate capturing angle. Fig. 
8 shows examples of such error results, where the detected lines are given in blue. The correct 
direction angle is 90 . However, because multiple, inconsistent lines were detected, the 
direction angles of Fig. 8(a) and Fig. 8(b) were estimated as 0 and 180 , respectively. The 
atmospheric scattering cue is based on the contrast values within each block and is used to 
estimate the depth gradient. However, when multiple objects exist in an image, the method 
will result in an incorrect depth gradient, as shown in Fig. 9. Fig. 10 shows examples of depth 
maps of the collected images. These were generated by data transfer (DT) [17] using 
state-of-the-art data-driven 2D-to-3D conversion [11], MST, and the proposed method. It is 
seen that [17] can generate smoother depth maps than the other two methods, while MST and 
the proposed method provide more scene detail. More depth levels can be produced by MST 
and the proposed method. Note that the results obtained by [17] and MST were under- and 
over-segmented, respectively, and that the proposed method can produce a balance between 
these to provide consistent depth values within the object.  

 5.3 Stereoscopic Images Synthesis 

For a given test image, the proposed work will synthesize left and right image pairs. The red–

(a) (b) (c) (d) 
Fig. 9. Examples of atmospheric perspective error: (a) and (c) are input images; (b) and (d) show the 
binary results of contrast values within each block. 

Fig. 8. Examples of linear perspective error: (a) and (c) are input images whereas (b) and (d) show the 
detected lines displayed in blue, which resulted in misclassification of the vanishing point. 

(a) (b) (c) (d) 
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cyan image will then be synthesized by [55]. To measure the stereoscopic effect, subjective 
evaluation was performed. The test interface is shown in Fig. 11. Seven generated results were 
randomly laid out on the interface, which consists of two results produced by commercial 
software (TriDef [15] and Media [16]) and five results produced by DG_MST, DG_SALIENT, 
Defocus map [61], DT [17], and the proposed method from their corresponding depth maps. 
Note that DG_MST used the depth gradient estimated by MST only and DG_SALIENT used 
binary depth map estimation of the salient region. Although study [61] did not aim at 
2D-to-3D conversion, the generated defocus map can also provide depth values. Eleven 
volunteers then voted for the results that they deemed to offer a relatively better stereoscopic 
visual and comfortable perception. Then eleven volunteers who voted for the preferred results, 
which were deemed to offer the better stereoscopic visual and comfortable perception. There 
are 20 sampled test images with no salient content, e.g., general scenery. Hence, under these 
conditions, depth map refinement is discarded in the proposed method and the depth gradient 
is estimated only by MST. To classify whether salient content exits, the salient map is 
binarized by a threshold, as discussed previously. The ratio defined as the number of white 
pixels relative to the black ones is then used to classify the presence of salient content. Note 
that this ratio is set to 3.0 in our study. Fig.12 shows images with no salient content. It can be  
observed that the size of the white region is larger than that of the black region, which indicates 
that no salient object is the subject of focus.  

Fig. 10. Examples of depth maps. The first row shows the original image. Depth maps shown in the 
second, third, and fourth rows were generated by [17], MST, and the proposed method, respectively. 

Fig. 11. Test Interface for subjective evaluation. Test interface for subjective evaluation. Red–cyan 
images generated by TriDef [15], Media [16], the proposed method, DG_MST (which produces a depth 
gradient estimate using MST segmentation only), DG_SALIENT (which uses a binary depth map based 
on the salient region detection results [25]) , Defocus map (which uses a defocus map [61]), and DT 
(which uses a depth map  [17]) were randomly displayed. Each volunteer selected the image(s) of the 
seven rendered results that offered the best stereoscopic visual and comfortable perception. 
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Table 3. Summary of degrees of satisfaction from the subjective evaluation of the stereoscopic effects 
of 90 test images with various image contents produced by commercial software (TriDef [15] and 
Media [16]) and depth maps generated by MST (DG_MST), salient region (DG_SALIENT), Defocus 
map [61], DT [17], and the proposed method. Blue font indicates best performance, and green italic font 
indicates second best. 

Table 3 summarizes the degree of satisfaction as the subjective evaluation result. The 
analysis is performed for six categories, and each category comprises images with one level of 
background complexity and one type of main object present (Table 1). Note that for each test 
image, more than one result can be selected. Then, the degree of satisfaction is defined as the 
ratio of the number of votes to the number of test images in each category multiplied the 
number of volunteers. In the first category, i.e., single main object with a simple background, 
the proposed method produced the most satisfactory results, with degrees of satisfaction 6% 
and 10% higher than those achieved with DG_MST and DT, respectively. More than half of 
the volunteers were pleased with the results of the proposed method. In the fourth category, the 
degree of satisfaction with the proposed method was 12% and 13% higher than those achieved 
with Defocus map and Media, respectively. Thus, the proposed method can provide an 
impressive perception of images with one salient object even when the background is complex. 
When an image is composed of multiple objects with a simple background, the proposed 
method still provided the highest degree of satisfaction, but the improvement was not very 
obvious (3% greater than that achieved with DG_MST). In the fifth category, for images with 

 
TriDef Media DG_MST 

DG_SAL
IENT 

Defocus 
map 

DT 
Our 

method 
Single main object + Simple 

background (Fig.12) 0.30 0.45 0.51 0.20 0.42 0.47 0.57 

Multiple objects + Simple 
background (Fig. 13) 0.32 0.46 0.50 0.24 0.43 0.43 0.53 

No main object +  Simple 
background (Fig. 14) 0.25 0.41 0.39 0.37 0.45 0.42 0.39 

Single main object + Complicated 
background (Fig. 15) 0.26 0.47 0.45 0.24 0.48 0.35 0.60 

Multiple objects +  Complicated 
background (Fig. 16) 0.26 0.40 0.51 0.34 0.46 0.47 0.42 

No main object +  Complicated 
background (Fig. 17) 0.36 0.59 0.69 0.60 0.61 0.55 0.70 

Fig. 12. Examples of scenery images to the left with their corresponding salient maps in the middle, and 
their binarized salient maps to the right. The ratio defined as the number of white pixels relative to the 
black ones is used to classify the presence of salient content. In the right figures, the size of the white 
region is larger than that of the black region, which indicates that no salient object is detected. 
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complicated backgrounds, DG_MST and DT provided relatively better results. In this case, the 
results might be attributable to the proposed method improperly combining the depth values of 
the salient object with those of the background region; depth maps that do not enhance the 
stereoscopic effect, such as DG_MST, DT, or Defocus map, can provide better results in this 
case. In the sixth category, DG_MST provided relatively better results than Defocus map and 
DT; it is possible that when there is no main object in a scene, the stereoscopic effect can be 
perceived through the level of depth change, and thus, more detail in the depth map leads to a 
higher degree of satisfaction. For the six categories, the average degrees of stratification 
produced by TriDef, Media, DG_MST, DG_SALIENT, Defocus map, DT, and the proposed 
method were 0.29, 0.46, 0.51, 0.33, 0.48, 0.45, and 0.54, respectively. Overall, the commercial 
software TriDef produced the worst results. It is also observed from Table 3 that the results of 
DG_SALIENT were not satisfactory because the method tends to overemphasize the salient 
object and neglect its positional relation relative to the background, resulting in an incorrect 
depth gradient. Although the stereoscopic perception of the salient object is enhanced, the 
method still cannot provide satisfactory results. On the other hand, the salient object content is 
not emphasized by DG_MST, and the method can give better results than DG_SALIENT 
because of the more accurate depth gradient. From a comparison of the above results produced 
by the proposed method with those of other methods, it is apparent that our framework can 
provide more satisfactory results when a main salient object is present because the proposed 
framework estimates depth gradients more precisely when compared with DG_SALIENCY 

Fig. 13. Example of single main object with a simple background. Top and bottom images in the first column are 
synthesized views produced by TriDef and Media, respectively. The second, third, fourth, fifth, and sixth columns 
show the results of DG_MST, DG_SALIENT, Defocus map, DT, and the proposed method, respectively. Depth 
maps are shown in the first row, and synthesized views are shown below their respective depth maps. 

Fig. 14. Example of multiple objects with a simple background. Top and bottom images in the first column are 
synthesized views produced by TriDef and Media, respectively. The second, third, fourth, fifth, and sixth columns 
show the results of DG_MST, DG_SALIENT, Defocus map, DT, and the proposed method, respectively. Depth 
maps are shown in the first row, and synthesized views are shown below their respective depth maps.   
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and DT and emphasizes the stereoscopic effect surrounding the salient object region better 
than Defocus map. Note, as mentioned above, if no salient object is detected in the test image, 
the process of depth map refinement will be discarded and the synthesized results will be the 
same as DG_MST. However, it can be observed that the results of test images containing no 
main object with a simple background and no main object with a complicated background for 
DG_MST, DG_SALIENT, and the proposed study are not consistent (Table 2). These results 
were obtainable because some reviewers voted for a single result. More synthesized results of 
various image content are shown in Fig. 13, Fig. 14, Fig. 15, Fig. 16,   Fig. 17, and Fig. 18 (it 
is suggested that the reader wear red–cyan glasses before evaluating the results for better 
visual effect). Furthermore, TriDef and Media required 0.3s and 1.2 s, respectively, to generate 
synthesis image pairs for one image with 300400×  pixels. For the same image, Defocus map 
[61] and DT [17] required 64.5s and 76.7s, respectively, for depth map generation in 
MATLAB.  

 6. Conclusion 
 We proposed an image-based 2D-to-3D conversion system that provides significant 
stereoscopic visual effects for humans. To avoid situation where one depth cue is not present 
in the given image, two depth cues, linear perspective and atmospheric cues, are fused to 
estimate the depth information. Rather than a retrieving precise depth value for pixels from the 
depth cues, the observation direction angle of the image is estimated. Then the depth gradient 
in accordance with the direction angle is integrated with superpixels to obtain the initial depth 
map. To enhance the visual stereoscopic effect, the visual attention of humans is considered. 
Saliency object detection within the image is performed to explore a significance region and 
then the refinement of the depth map is conducted by enhancing the contrast depth value 
around the salient regions. Note that the depth consistency of all other regions is preserved.  
Thus, the refined depth map can not only maintain global depth consistency by correcting 
non-uniform depth values but visual stereoscopic effect is enhanced as well. According to our 
subjective evaluation study, our method produces the most satisfactory results; the degrees of 
satisfaction were 8% and 7% greater than those achieved using commercial 2D-to-3D 
conversion software and the state-of-the-art approach, respectively.  

Fig. 15. Example of no salient object with a simple background. Top and bottom images in the first column are 
synthesized views produced by TriDef and Media, respectively. The second, third, and fourth columns show the 
results of DG_MST, Defocus map, and DT, respectively. Depth maps are shown in the first row, and synthesized 
views are shown below their respective depth maps. Note that results of the proposed method and DG_SALIENT 

are equivalent to those of DG_MST. 
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Fig. 16. Example of single main object with a complicated background. Top and bottom images in the first column 
are synthesized views produced by TriDef and Media, respectively. The second, third, fourth, fifth, and sixth 
columns show the results of DG_MST, DG_SALIENT, Defocus map, DT, and the proposed method, respectively. 
Depth maps are shown in the first row, and synthesized views are shown below their respective depth maps. 

Fig. 17. Example of multiple objects with a complicated background. Top and bottom images in the first column are 
synthesized views produced by TriDef and Media, respectively. The second, third, fourth, fifth, and sixth columns 
show the results of DG_MST, DG_SALIENT, Defocus map, DT, and the proposed method, respectively. Depth maps 
are shown in the first row, and synthesized views are shown below their respective depth maps. 

Fig. 18.  Example of no salient object with a complicated background. Top and bottom images in the first 
column are synthesized views produced by TriDef and Media, respectively. The second, third, and fourth 
columns show the results of DG_MST, Defocus map, and DT, respectively. Depth maps are shown in the 
first row, and synthesized views are shown below their respective depth maps. Note that results of the 
proposed method and DG_SALIENT are equivalent to those of DG_MST. 
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