• Title/Summary/Keyword: 3D crack propagation

Search Result 113, Processing Time 0.023 seconds

A Study of Stress Ratio Influence on the Fatigue Crack Growth Characteristics of Pressure Vessel Steel at Low Temperature (압력용기용 강의 응력비에 따른 저온 피로균열 진전특성에 관한 연구)

  • 박경동;하경준;박형동
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.100-106
    • /
    • 2001
  • In this study, CT specimens were prepared from Pressure Vessel Steel which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -10$0^{\circ}C$ and -12$0^{\circ}C$ and in the range of stress ratio of 0.05 and 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ${\Delta}K_{th}$ in the early stage of fatigue crack growth (Region I) and stress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) was increased in proportion to descent temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN $-{\Delta}K$ in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It was assumed that the fatigue crack growth rate da/dN in proportion to descending temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

The dynamic fracture toughness of aluminum alloy weld zone by instrumented charpy test (計裝化 샬피 시험법 에 의한 알루미늄 합금 용접부 의 동적파괴 인성)

  • 문경철;강락원;이준희
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.42-51
    • /
    • 1985
  • The dynamic fracture toughness, fracture characteristics, impact tension and tensile properties of Al-Mg-Si T5 alloy and Al-Zn-Mg T6 alloy respectively welded with filler metal of Alcan 4043 were investigated. The dynamic fracture toughness values were obtained rapidly and simply for the specimen of small size by using instrumented Chirpy impact testing machine. the testing temperatures of the specimen were a range of room temperature and-196.deg. C. The results obtained in this experiment are summarized as follows. With decreasing the testing temperatures, dynamic tensile stress and fracture load were increased, on the other hand the deflection and impact value showed decreasing tendency in order of base metal>HAZ>weld. Changes of total absorbed energy were more influenced by the crack propagation energy than the crack initiation energy. At the low temperatures, the unstable rapid fracture representing the crack propagation appeared for the specimens of Charpy press side notched in Al-Zn-Mg alloy, but it was difficult to obtain the unstable rapid fracture in Al-Mg-Si alloy. Because of the development of plastic zone at the notch root, it was difficult to obtain thevalid $K_{1d}$ value in Al-Mg-Si alloy. Therefore the fatigue cracked specimens were effective in both Al-Mg-Si and Al-Zn-Mg alloys. With decreasing the impact testing temperatures, specimens underwent a transition from dimple-type transgranular fracture to lamella surface-type intergranular fracture because of the precipitate at the grain boundaries, impurities and crystal structure of the precipitates.s.

  • PDF

The Effect of Compressive Residual Stress on Fatigue Fracture of the Spring steel (현가장치용 SUP-9강의 피로파괴에 미치는 압축잔류응력의 영향)

  • Park, Kyoung-Dong;Jin, Young-Beom
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.79-85
    • /
    • 2004
  • The lightness of components required in automobile and machinery industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part of current industries. Currently, the shot peening is used for removing the defects from the surface of steel and improving the fatigue strength on surface. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9)by shot peening on fatigue crack growth characteristics in stress ratio(R=0 1, R=0 3, R=0 6)was investigated considering fracture mechanics. By using the methods mentioned above, I arrived at the following conclusions: (1) The fatigue crack growth rate(da/dN) of the shot peening material was lower than the unpeening material And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot peening material is high in critical parts unlike the unpeening material. (2) Fatigue life shows more Improvement in the shot peening material than in the unpeening material. And compressive residual stress of surface on the shot peening processed operate the resistance of fatigue crack propagation.

  • PDF

Crack Propagation in Earth Embankment Subjected to Fault Movement (단층 운동시 댐 파괴 거동 해석)

  • 손익준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1988.06c
    • /
    • pp.3-67
    • /
    • 1988
  • Model studies on the response of homgeneous earth embankment dams subjected to strike-slip fault movement have been penomed via centrifuge and finite element analysis. The centrifuge model tests have shown that crack development in earth embankment experiences two major patters: shear failure deep inside the embankment and tension failure near the surface. The shear rupture zone develops from the base level and propagates upward continuously in the transverse direction but allows no open leakage chnnel. The open tensile cracks develop near the surface of the embankment, but they disappear deep in the embankment. The functional relationship has been developed based on the results of the centrifuge model tests incorporating tile variables of amount of fault movement, embankment geometry, and crack propagation extent in earth des. This set of information can be used as a guide line to evaluate a "transient" safety of the duaged embankment subjected to strike-slip fault movement. The finite element analysis has supplemented the additional expluations on crack development behavior identified from the results of the centrifuge model tests. The bounding surface time-independent plasticity soil model was employed in the numerical analysis. Due to the assumption of continuum in the current version of the 3-D FEM code, the prediction of the soil structure response beyond the failure condition was not quantitatively accurate. However, the fundamental mechanism of crack development was qualitatively evaluated based on the stress analysis for the deformed soil elements of the damaged earth embankment. The tensile failure zone is identified when the minor principal stress of the deformed soil elements less than zero. The shear failure zone is identified when the stress state of the deformed soil elements is at the point where the critical state line intersects the bounding surface.g surface.

  • PDF

A Study on the Fatigue Crack Growth threshold Characteristic for Steel of Pressure Vessel at Low Temperature (압력용기용강의 저온피로 크랙전락 하한계 특성에 관한 연구)

  • 박경동;하경준
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.224-227
    • /
    • 2001
  • In this study, CT specimens were prepared hem ASTM SA516 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -l$0^{\circ}C$ and -l2$0^{\circ}C$ and in the range of stress ratio of 0.1, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range $\Delta K_{th}$ in the early stage of fatigue crack growth ( Region I ) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth ( Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN - $\Delta$K in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region H and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

A Study of Stress ratio Influence on the Fatigue Crack Growth of SA516 Steel at Low Temperature (SA516 강의 응력비에 따른 저온피로크랙 전파특성에 관한 연구)

  • 박경동;하경준
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.320-325
    • /
    • 2001
  • In this study, CT specimen were prepared from Pressure Vessel Steel which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -10$0^{\circ}C$ and -12$0^{\circ}C$ and in the range of stress ratio of 0.05 and 0.3 by means of opening mode displacement. At the constant street ratio, the threshold stress intensity factor range ΔK$_{th}$ in the early stage of fatigue crack growth(Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth(Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm do/dN -ΔK in RegionII, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It was assumed that the fatigue crack growth rate do/dN is rapid in proportion to descending temperature in Region IIand the cryogenic-brittleness greatly affect a material with decreasing temperature.e.greatly affect a material with decreasing temperature.

  • PDF

A Study on the Characteristics of Fatigue Crack Growth of A516 Steel for Pressure Vessel at Low Temperatures (압력용기용 A516강의 저온피로크랙전파특성에 관한 연구)

  • Park, Kyung-Dong;Ro, Tae-Young;Kim, Young-Dae;Kim, Hyung-Ja;Son, Jae-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.108-113
    • /
    • 1999
  • In this study, CT specimens were prepared from ASTM A516 Gr. 65 which was used for pressure vessel plates for moderate and lower temperature service. Fatigue crack growth test was carried out in the environment of low temperature of $10^{circ}C, -10^{circ}C, -30${circ}C\;and\;-50^{circ}C$ and in the range of stress ratio of R=0.05 and 0.3 by means of opening mode displacement. Based on these test results, the characteristics from temperature and stress ration were shown as follows. 1) As the stress ratio, R increased da/dN and ${Delta}K$ of 2nd stage gradually decreased. And as R decreased, the effect of temperature became greater and greater. 2) As the temperature descended, da/dN decreased on a certain ${Delta}K$, and ${Delta}K$ did in a same da/dN. And the stress ratio, R exerted greater influence at the lower temperature. 3) The fatigue crack growth constant, m increased at $10^{circ}C$ and $-10^{circ}C$, snd decreased at $-30^{circ}C$ and $-50^{circ}C$ following the increment of stress ratio R. And m increased along with the reduction of temperature greatly decreased at $-30^{circ}C$ to come close to two(2).

  • PDF

Three-dimensional finite element modeling of a transverse top-down crack in asphalt concrete

  • Ayatollahi, Majid R.;Pirmohammad, Sadjad;Sedighiani, Karo
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.569-585
    • /
    • 2014
  • In this paper, a four-layer road structure consisting of an edge transverse crack is simulated using three-dimensional finite element method in order to capture the influence of a single-axle wheel load on the crack propagation through the asphalt concrete layer. Different positions of the vehicular load relative to the cracked area are considered in the analyses. Linear elastic fracture mechanics (LEFM) is used for investigating the effect of the traffic load on the behavior of a crack propagating within the asphalt concrete. The results obtained show that the crack front experiences all three modes of deformation i.e., mode I, mode II and mode III, and the corresponding stress intensity factors are highly affected by the crack geometry and the vehicle position. The results also show that for many loading situations, the contribution of shear deformation (due to mode II and mode III loading) is considerable.

Study on the Corrosion Fatigue Crack Propagation Behavior of Steel Used for Frame of Vehicles in Marine Environment (해양환경중에서 자동차 프레임용 강재의 부식피로균열전파거동에 관한 연구)

  • 이상열;임종문;이종악
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.76-84
    • /
    • 1992
  • In this study, corrosion fatigue test of SAPH45 steel was performed by the use of plane behavior of base metal (BM) and heat affected zone (HAZ) of SAPH45. The main results obtained are as follows: 1) The more aspect ratio (b/t) of corner crack decreases, the more aspect ratio (b/a) takes greatly effect by corrosion. 2) The correlation between the stress intensity factor range ($\Delta$k) and crack growth rate (da/dN) for weldment in seawater is given by Paris rule as follow: da/dN=C($\Delta$K) super(m). Where m is constant, and the value is 3.82-3.84. 3) The accelerative factor ($\alpha$) of BM and HAZ under seawater is about 1.1-1.9, and ($\alpha$) of HAZ increases more and more under the low $\Delta$K region. 4) HAZ is more susceptible to corrowion than BM because of potential of electrode (E sub(c)) of HAZ becomes more less noble potential than that of BM.

  • PDF

Fracture analysis for nozzle cracks in nuclear reactor pressure vessel using FCPAS

  • Abdurrezzak Boz;Oguzhan Demir
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2292-2306
    • /
    • 2024
  • This study addresses cracks and fracture problems in engineering structures that may cause significant challenges and safety concerns, with a focus on pressure vessels in nuclear power plants. Comprehensive parametric three-dimensional mixed mode fracture analyses for inclined and deflected nozzle corner cracks with various crack shape aspect ratios and depth ratios in nuclear reactor pressure vessels are carried out. Stress intensity factor (SIF) solutions are obtained using FRAC3D, which is part of Fracture and Crack Propagation Analysis System (FCPAS), employing enriched finite elements along the crack front. Also, improved empirical equations are developed to allow the determination of mixed mode SIFs, KI, KII, and KIII, for any values of the parameters considered in the study. This study provides practical solutions to assess the remaining life and fail-safe conditions of nuclear reactors by providing accurate SIF determination.