• Title/Summary/Keyword: 3D computer system

Search Result 1,805, Processing Time 0.034 seconds

Virtual Reality Using X3DOM (X3DOM을 이용한 가상현실)

  • Chheang, Vuthea;Ryu, Ga-Ae;Jeong, Sangkwon;Lee, Gookhwan;Yoo, Kwan-Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.165-170
    • /
    • 2017
  • Web 3D technology can be used to simulate the experiments of scientific, medical, engineering and multimedia visualization. On the web environment, 3D virtual reality can be accessed well without strictly on operating system, location and time. Virtual Reality (VR) is used to depict a three-dimensional, computer generated realistic images, sound and other sensations to replicated a real environment or an imaginary setting which can be explored and interacted with by a person. That person is immersed within virtual environment and is able to manipulate objects or perform a series of action. Virtual environment can be created with X3D which is the ISO standard for defining 3D interactive, web-based 3D content and integrating with multimedia. In this paper, we discuss about X3D VR stereo rendering scene and propose new X3D nodes for the HMD VR (head mounted display virtual reality). The proposed nodes are visualized by the web browser X3DOM of X3D.

Autostereoscopic Multiview 3D Display System based on Volume Hologram (체적 홀로그램을 이용한 무안경 다안식 3D 디스플레이 시스템)

  • 이승현;이상훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.12
    • /
    • pp.1609-1616
    • /
    • 2001
  • We present an autostereoscopic 3D display system using volume hologram. In this proposed system, the interference pattern of angular multiplexed plane reference and object beams are recorded into a volume hologram, which plays a role of guiding object beams of multi-view images into the desired perspective directions. For reconstruction, object beams containing the desired multi-view image information, which satisfy Bragg matching condition, are illuminated in the time-division multiplexed manner onto the crystal. Then multiple stereoscopic images are projected to the display plane for autostereoscopic 3D viewing. It is possible to make a high resolution multiview 3D display system independent upon the viewpoint.

  • PDF

A Study of Generating Depth map for 3D Space Structure Recovery

  • Ban, Kyeong-Jin;Kim, Jong-Chan;Kim, Eung-Kon;Kim, Chee-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1855-1862
    • /
    • 2010
  • In virtual reality, there are increasing qualitative development in service technologies for realtime interaction system development, 3- dimensional contents, 3D TV and augment reality services. These services experience difficulties to generate depth value that is essential to recover 3D space to form solidity on existing contents. Hence, research for the generation of effective depth-map using 2D is necessary. This thesis will describe a shortcoming of an existing depth-map generation for the recovery of 3D space using 2D image and will propose an enhanced depth-map generation algorithm that complements a shortcoming of existing algorithms and utilizes the definition of depth direction based on the vanishing point within image.

A Multi 3D Objects Augmentation System Using Rubik's Cube (루빅스 큐브를 활용한 다 종류 3차원 객체 증강 시스템)

  • Lee, Sang Jun;Kim, Soo Bin;Hwang, Sung Soo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1224-1235
    • /
    • 2017
  • Recently, augmented reality technology has received much attention in many fields. This paper presents an augmented reality system using Rubiks' Cube which can augment various 3D objects depending on patterns of a Rubiks' cube. The system first detects a cube from an image using partitional clustering and strongly connected graph. Thereafter, the system detects the top side of the cube and finds a proper pattern to determine which object should be augmented. An object corresponding to the pattern is finally augmented according to the camera viewpoint. Experimental results show that the proposed system successfully augments various virtual objects in real time.

Production automation system for three-dimensional template pieces used to evaluate shell plate completeness

  • Son, Seunghyeok;Kim, Byeongseop;Ryu, Cheolho;Hwang, Inhyuck;Jung, ChangHwan;Shin, Jong-Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.116-128
    • /
    • 2020
  • In the shipbuilding industry, three-dimensional (3D) templates play a key role in the completeness evaluation of shell plates with a large curvature in the shell-plate fabrication process. Currently, the information of 3D templates from a ship computer-aided design system is limited; thus, manufacturers depend on their experience to produce the templates manually. This results in the inaccuracy of templates in addition to increased production time. Therefore, if the pieces of the 3D templates can be produced automatically with accurate information, the lead time of the fabrication process can be reduced. In this study, we define a new type of template piece and develop methods for extending a boundary template and converting manufacturing information into numerical control machine input. In addition, based on the results of the study, we propose a production automation system for 3D template pieces. This system is expected to reduce the lead time of the fabrication process.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

Performance Analysis of the FH/MFSK System using the Selection Diversity in Nakagami Fading Channel (나카가미 페이딩 채널에서 선택 합성 다이버시티를 적용한 FH/MFSK 시스템의 성능분석)

  • Lee, Chung-Seong;Kim, Hang-Rae;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1186-1193
    • /
    • 2000
  • In this paper, the system performance with the selection diversity, which is applied to the FH/MFSK system in Nakagami fading channel, is analyzed. The deletion probability is derived from the received signal to noise ratio(SNR) after selection combining and the parameters such as the number of users(M), SNR, Nakagami fading figure(m), and the number of diversity branches(D) is used for the performance analysis of the FH/MFSK system. Assuming that m set 1, it is observed that the bit error rate(BER) is 1.0$\times$$10^{-3}$ and 1.0$\times$$10^{-4}$ at D =1(no diversity) and D=2, respectively, and then is decreased by 10 times. Assuming that m set 2, it is also shown that the BER has a constant value although D is increased. In the case of D=2, the system capacity is more 75% and 20% than that considering no diversity at SNR=15 dB and 25 dB, respectively.

  • PDF

Performance Analysis of a OFDM System for Wireless LAN in Indoor Wireless Channel (실내 무선 채널 환경에서 무선 LAN용 OFDM 시스템의 성능 분석)

  • Choi, Yeoun-Joo;Kim, Hang-Rae;Kim, Nam;Ko, Young-Hoon;Ahn, Jae-Hyeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.2
    • /
    • pp.268-277
    • /
    • 2001
  • In this paper, the system performance with the convolution code using a Viterbi decoding and the one tap LMS equalizer applied to the OFDM system, which is suitable for IEEE 802.1la wireless LAN in indoor wireless channel, is analyzed through computer simulation. Indoor wireless channel is modeled as Rician fading channel, and QPSK and 16QAM scheme are used for subchannel modulation. In Rician fading channel with the power ratio of the direct path signal to the scattered signals, K=5 dB, BER of $10^{-4}$ is satisfied if the SNRs of the QPSK/OFDM and the 16QAM/OFDM are 8.6 dB and 19.2 dB in hard decision and 5.3 dB and 9.8 dB in soft decision, respectively. Compared with convolution code scheme, it is observed that 16QAM/OFDM system with the one tap LMS equalizer has the performance improvement of 8.6 dB and 2 dB in hard decision and soft decision, respectively.

  • PDF

Real-time 3D Audio Downmixing System based on Sound Rendering for the Immersive Sound of Mobile Virtual Reality Applications

  • Hong, Dukki;Kwon, Hyuck-Joo;Kim, Cheong Ghil;Park, Woo-Chan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5936-5954
    • /
    • 2018
  • Eight out of the top ten the largest technology companies in the world are involved in some way with the coming mobile VR revolution since Facebook acquired Oculus. This trend has allowed the technology related with mobile VR to achieve remarkable growth in both academic and industry. Therefore, the importance of reproducing the acoustic expression for users to experience more realistic is increasing because auditory cues can enhance the perception of the complicated surrounding environment without the visual system in VR. This paper presents a audio downmixing system for auralization based on hardware, a stage of sound rendering pipelines that can reproduce realiy-like sound but requires high computation costs. The proposed system is verified through an FPGA platform with the special focus on hardware architectural designs for low power and real-time. The results show that the proposed system on an FPGA can downmix maximum 5 sources in real-time rate (52 FPS), with 382 mW low power consumptions. Furthermore, the generated 3D sound with the proposed system was verified with satisfactory results of sound quality via the user evaluation.

Effect of Fabric Properties used for the Loop Type Decorative Elements on the 3-dimensional Shape

  • Ko, Youngmin;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.17 no.3
    • /
    • pp.30-47
    • /
    • 2013
  • In the modern fashion industry, efficiency has been increasing thanks to development of computer graphics, IT technology, and digitalization. Unlike the past when fashion design heavily depended on handwork, digitalization of fashion industry makes fabrication time shorter and enables designers to adopt comprehensive expression, generating high value-added product. The Apparel CAD, an example of the digitalized fashion industry, has been developed from 2D system into a system providing 3D simulation. Digital clothing can be determined as an activity of designers using the tool in order to fabricate pattern and simulate its designed clothes in the virtual space of computer. In this study, physical properties of eight materials, which can be utilized on a par with current fashion trend, have been specified. For more sophisticated investigation, external appearance of the material was investigated by 3D scanning. In order to examine the physical properties of fabric specimens, KES(Kawabata Evaluation System) measurements and other physical property measurements were made. With the results, virtual material and clothes were simulated via CLO 3D, one of 3D apparel CAD systems. Then, virtual fabrics and clothes of similar types were generated and analyzed.