• Title/Summary/Keyword: 3D collagen matrix

Search Result 39, Processing Time 0.028 seconds

Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.89-102
    • /
    • 2019
  • Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.

Preparation of Camel Milk Liposome and Its Anti-Aging Effects (낙타유가 함유된 리포좀 제조 및 피부 노화 개선 효과 연구)

  • Choi, Sung Kyu;Park, Kun Dong;Kim, Da Ae;Lee, Dae Woo;Kim, Yun Jeong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.155-162
    • /
    • 2014
  • In this study, in order to know the application for cosmetic ingredient, the liposome contained camel milk was prepared and tested in human skin fibroblast. Collagen and hyaluronan synthase-3 (HAS-3) gene expression were increased by camel milk liposome in a concentration-dependent manner, whereas elastase activity and matrix metalloproteinase (MMP)-1 gene expression were inhibited. We also found that camel milk liposome regenerated UVB-damaged fibroblast. As the results, we suggest that the liposome contained camel milk is applicable for a potential cosmetic ingredient to improve anti-aging effect.

Simvastatin as a Modulator of Tissue Remodeling through Inhibition of Matrix Metalloproteinase (MMP) Release from Human Lung Fibroblasts

  • Ra, Ji-Eun;Lee, Ji-Kyoung;Kim, Hui-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.3
    • /
    • pp.172-179
    • /
    • 2011
  • Background: Statins can regulate the production of pro-inflammatory cytokines and inhibit MMP production or activation in a variety of types of cells. This study evaluated whether statins would inhibit MMP release from human lung fibroblasts, which play a major role in remodeling processes. Methods: This study, using an in-vitro model (three-dimensional collagen gel contraction system), evaluated the effect of cytokines (tumor necrosis factor-${\alpha}$, TNF-a and interleukin-$1{\beta}$, IL-1b) on the MMP release and MMP activation from human lung fibroblasts. Collagen degradation induced by cytokines and neutrophil elastase (NE) was evaluated by quantifying hydroxyproline. Results: In three-dimensional collagen gel cultures (3D cultures) where cytokines (TNF-a and IL-1b) can induce the production of MMPs by fibroblasts, it was found that simvastatin inhibited MMP release. In 3D cultures, cytokines together with NE induced collagen degradation and can lead to activation of the MMP, which was inhibited by simvastatin. Conclusion: Simvastatin may play a role in regulating human lung fibroblast functions in repair and remodeling processes by inhibiting MMP release and the conversion from the latent to the active form of MMP.

Changes in Hydrophobic Surface of Collagen by Chondroitin Sulfate : Fluorescence Intensity Measurements with Bis-ANS as the Probe

  • Kim, Sung-Koo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.446-453
    • /
    • 1995
  • The improtant components of extracellular matrix(ECM) are collagen and chondroitin sulfate. The hydrophobic surface of collagen is one of the determining factors of diameter of collagen fiber and also is closely related to the aging phenomena. The controlling mechanism of the diameter of collagen fiber influenced by the interaction with chondroitin sulfate was evaluated using bis-ANS as a hydrophobic probe. Hydrophobic surface area of collagen molecule shielded by chondroitin sulfate was evaluated. Relative fluorescence intensity of collagen in thepresence of chondroitin sulfate was measured using bis-ANS as a hydrophobic probe. The fluorescence intensity decreased with the increase in chondroitin sulfate up to 3.8 chondroitin sulfate/collagen(mole/mole). Further increase in the ratio of chondroitin sulfate to collagen did not change the fluorescence intensity. Similar changes in the relative fluorescence intensity were observed for both rat tail and lathyrific rat skin collagen. The fluorescence intensity indicated by the binding between bis-ANS and hydrophobic sites of collagen was pH dependent, and the shielding effect of collagen-chondroitin sulfate interaction could not be detected at pH above 6.0. This is probably due to the charge repulsions caused by negative charged collagen molecules at higher pH.

  • PDF

PRODUCTION OF HUMAN PROTEIN TIMP-2: A HIGHLY EFFECTIVE ANTI-AGING INGREDIENT

  • Schutz, R.;Imfeld, D.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.590-600
    • /
    • 2003
  • The matrix metalloproteinases (MMPs) are a family of enzymes responsible for degrading connective tissue. MMPs catalyze the breakdown of collagen from the extracellular matrix, leading to wrinkle formation and accelerated skin aging. Furthermore, ultraviolet irradiation causes increased expression of certain MMPs. In the extracellular matrix turnover, MMPs are interacting with endogenous regulators named tissue inhibitors of metalloproteinases (TIMPs). Using peptide substrate assays, it has been demonstrated that TIMP-MMP complexes interact highly specifically with $K_{i}$ values of 10$^{-9}$ -10$^{-16}$ M. Therefore applications for TIMP as inhibitor of collagen degradation are suggested for cosmetic anti-aging products to prevent wrinkle formation and loss of elasticity. To date four TIMP proteins (TIMP-1, TIMP-2, TIMP-3 and TIMP-4) have been identified which show a high degree in sequence similarity. The production of human TIMP-2, a 194-residue nonglycosylated protein, was performed by fed-batch culture of Escherichia coli. TIMP-2 accumulated in the bacterial cells in an insoluble form as inclusion bodies. The inclusion bodies were solubilized and the protein refolded to yield the native TIMP-2 in the active form. The integrity of the protein was confirmed by mass analysis, Edman sequencing and gel shift experiments with authentic samples. The inhibitory activity of the refolded and purified TIMP-2 was demonstrated with MMP-1 and MMP-2 assays using synthetic fluorogenic peptide substrates.s.

  • PDF

An aqueous extract isolated from Platycodon grandiflorum reduced acetaldehyde-induced collagen and alpha-SMA expression in hepatic stellate cells

  • Lee, Kyung-Jin;Shin, Dong-Weon;Chung, Young-Chul;Kim, Young-Sup;Ryu, Si-Yung;Roh, Sung-Hwan;Jeong, Hye-Gwang
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.113.3-114
    • /
    • 2003
  • The increased deposition of extracellular matrix by hepatic stellate cells following liver injury in a process known as activation is considered a key mechanism for increased collagen content of liver during the development of liver fibrosis. In this study, we investigated the protective effects of an aqueous extract from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil (CK), on hepatic fibrosis in hepatic stellate cells. We report that CK reduces the accumulation of collagen in acetaldehyde-induced hepatic stellate cells. (omitted)

  • PDF

Skin Hydration and Collagen Synthesis of AF-343 in HS68 Cell Line and NC/Nga Mice by Filaggrin Expression and Suppression of Matrix Metallopreteinase

  • Cho, Jae-We;Jeong, Yeon-Su;Han, Ji-Won;Chun, Young-Jin;Kim, Hyun-Kyu;Kim, Min-Young;Kim, Beom-Joon;Park, Ki-Moon;Kim, Jong-Keun;Kim, Jae-Hyun;Cho, Soo-Muk
    • Toxicological Research
    • /
    • v.27 no.4
    • /
    • pp.225-229
    • /
    • 2011
  • Extract of Taraxacum platycarpum (AF-343) has been reported to have several biological properties such as skin hydration and anti-inflammatory effects. Although clinical evidences of skin hydration and antiinflammatory effect were proven in clinical trial, precise mechanism of skin hydration was not fully understood yet. In this study, we have focused skin hydration mechanism related filaggrin, collagen, and matrix metalloproteinase (MMP) in vitro and animal study. Herein, skin hydration mechanism of AF-343 is due to recovery of filaggrin in mice model and increased production of collagen with suppression of matrix MMP in vitro fibroblast cell line.

Effect of Green Tea Catechins on the Expression and Activity of MMPs and Type I Procollagen Synthesis in Human Dermal Fibroblasts (사람 섬유아세포에서 녹차 카테킨이 노화 인자인 MMP와 type 1 Procollagen 발현에 미치는 영향)

  • Shin, Hyun-Jung;Kim, Su-Nam;Kim, Jung-Ki;Lee, Byeong-Gon;Chang, Ih-Seoup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.2 s.57
    • /
    • pp.117-121
    • /
    • 2006
  • Although many studies have been performed to elucidate the molecular consequence of factors that regulate skin aging, little is known about the effect of green tea catechins except EGCG. The matrix metalloproteinase (MMP), can degrade matrix proteins and results in a collagen deficiency in photodamaged skin, are known to play an important role in photoaging. This study, investigated the effects of green tea catechins on the UVA-induced MMP-1 expression, activity of MMP-2 and synthesis of type I procollagen in human dermal fibroblasts. We examined eight catechins that naturally exist in green tea leaves and compared their efficacies among them. Most of catechins inhibited the expression of MMP-1 in dose dependent manner, and the levels were reduced, especially, 57.4 and 68.2% by treatment with $1{\mu}M$ of epigallocatechin-3-gallate (EGCG) and gallocatechin-3-gallate (GCG), respectively. Also, catechins significantly suppressed the activities of MMP-2. Catechins also induced the expression of type I procollagen, however, they acted only at the concentration below $1{\mu}M$ interestingly. Furthermore, when EGCG:GCG:ECG had the ratio of 0.5:1.5:.1.3, they presented the most effective on procollagen synthesis. Therefore, we concluded that catechins significantly inhibited MMPs and induced collagen synthesis. Taken together, all these results suggested that green tea catechins might be good natural materials act as an anti-photoaging and a skin-aging improving agent.

The Anti-Diabetic Pinitol Improves Damaged Fibroblasts

  • Ji-Yong Jung;Joong Hyun Shim;Su Hae Cho;Il-Hong Bae;Seung Ha Yang;Jinsick Kim;Hye Won Lim;Dong Wook Shin
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.224-230
    • /
    • 2024
  • Pinitol (3-O-Methyl-D-chiro-inositol) has been reported to possess insulin-like effects and is known as one of the anti-diabetic agents to improve muscle, liver, and endothelial cells. However, the beneficial effects of pinitol on the skin are not well known. Here, we investigated whether pinitol had effects on human dermal fibroblasts (HDFs), and human dermal equivalents (HDEs) irradiated with ultraviolet A (UVA), which causes various damages including photodamage in the skin. We observed that pinitol enhanced wound healing in UVA-damaged HDFs. We also found that pinitol significantly antagonized the UVA-induced up-regulation of matrix metalloproteinase 1 (MMP1), and the UVA-induced down-regulation of collagen type I and tissue inhibitor of metalloproteinases 1 (TIMP1) in HDEs. Electron microscopy analysis also revealed that pinitol remarkably increased the number of collagen fibrils with regular banding patterns in the dermis of UVA-irradiated human skin equivalents. Pinitol significantly reversed the UVA-induced phosphorylation levels of ERK and JNK but not p38, suggesting that this regulation may be the mechanism underlying the pinitol-mediated effects on UVA-irradiated HDEs. We also observed that pinitol specifically increased Smad3 phosphorylation, which is representative of the TGF-β signaling pathway for collagen synthesis. These data suggest that pinitol exerts several beneficial effects on UVA-induced damaged skin and can be used as a therapeutic agent to improve skin-related diseases.

Effects of Amomi, Semen Extract on Synthesis of Insulin-like Growth Factor-1 and Anti-wrinkle in Skin (사인추출물의 인슐린 유사 성장인자-3의 합성과 피부 노화 개선에 대한 효과)

  • Choi Gyu Ho;Kim Su Nam;Lee So Hee;Sung Dae Seok;Son Eui Dong;Lee Chang Hoon;Lee Byeong Gon;Jang Ih Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.389-392
    • /
    • 2004
  • We screened several materials to stimulate IGF-1 promoter activity using luciferase reporter assay and found that Amomi Semen extract (ASE) among them is the most powerful stimulator We also studied about the anti-wrinkle effect of ethanolic extract of Amoni Semen in vitro and in vivo. Semi-quantitative RT-PCR showed that the extract elevated the presence level of IGF-1 mRNA. And $[^3H]$ proline incorporation and semi-quantitative RT-PCR showed that the extract increased the expression of type-I collagen compared with vehicle in vitro and in vivo, respectively. Significant inhibition of MMP-1 expression was determined by ELISA and Western blot. Finally, topical treatment of the extract on hairless mouse's dorsal skin expanded the volume of collagen and dermal thickness. These results suggest that Amomi Semen may be a good candidate for improving extracellular matrix through the increase of collagen expression and inhibition of MMP-1 expression. Moreover, this study enables us to guess that IGF-1 stimulated by the extract may be involved in the mechanism of anti-wrinkle effect of it.