• Title/Summary/Keyword: 3D body shape modeling

Search Result 46, Processing Time 0.026 seconds

A study of making a dress form for women using a 3D printer (3D 프린터를 이용한 여성용 인대 제작 연구)

  • Oh, Seol Young
    • The Research Journal of the Costume Culture
    • /
    • v.24 no.6
    • /
    • pp.725-742
    • /
    • 2016
  • In the Korean fashion industry, 3D printing systems are considered as new technology and a new opportunity. With 3D printers, consumers can be manufacturers and individuals can develop businesses with little upfront capital. In this study, a dress form for the typical Korean women's body shape was developed using 3D technology (3D scanning, 3D modeling, and 3D printing). Ten women with apparel sizes 85-91-160 were selected from 3D body-scan data collected by SizeKorea of 201 women aged 25 to 34 (2010). First, 15 horizontal cross-sections were collected from the 3D scan data of the 10 subjects. Then, inside lines of those cross-sections were drawn at 15-degree intervals, and the lengths were measured. The average of the inside lines was connected to the internal spline curve, and the curves were used as the average cross-sections. The average torso body and the dress form of Korean women were developed into a 3D solid model using a 3D CAD program (Solidworks 2012). An output mockup was printed by the FDM type's 3D printing system (Bonbot 1200, Bonbot 3-H4) using PLA material. The dimensions comparing the 3D solid modeling to the 3D printed mockup of the dress form were measured, and minor differences were between 0.00cm and 0.40cm. In the future, 3D printing systems are expected to be in use for various personalized dress forms.

Transfer Learning based Parameterized 3D Mesh Deformation with 2D Stylized Cartoon Character

  • Sanghyun Byun;Bumsoo Kim;Wonseop Shin;Yonghoon Jung;Sanghyun Seo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3121-3144
    • /
    • 2023
  • As interest in the metaverse has grown, there has been a demand for avatars that can represent individual users. Consequently, research has been conducted to reduce the time and cost required for the current 3D human modeling process. However, the recent automatic generation of 3D humans has been focused on creating avatars with a realistic human form. Furthermore, the existing methods have limitations in generating avatars with imbalanced or unrealistic body shapes, and their utilization is limited due to the absence of datasets. Therefore, this paper proposes a new framework for automatically transforming and creating stylized 3D avatars. Our research presents a definitional approach and methodology for creating non-realistic character avatars, in contrast to previous studies that focused on creating realistic humans. We define a new shape representation parameter and use a deep learning-based method to extract character body information and perform automatic template mesh transformation, thereby obtaining non-realistic or unbalanced human meshes. We present the resulting outputs visually, conducting user evaluations to demonstrate the effectiveness of our proposed method. Our approach provides an automatic mesh transformation method tailored to the growing demand for avatars of various body types and extends the existing method to the 3D cartoon stylized avatar domain.

The Standardization of Developing Method of 3-D Upper Front Shell of Men in Twenties (20대 성인 남성 상반신앞판현상의 평면 전개를 위한 표준화 연구)

  • Cui, Ming-Hai;Choi, Young-Lim;Nam, Yun-Ja;Choi, Kueng-Mi
    • Fashion & Textile Research Journal
    • /
    • v.9 no.4
    • /
    • pp.418-424
    • /
    • 2007
  • The purpose of this study is to propose a standard of converting 3D shape of men in twenties to 2D patterns. This can be a basis for scientific and automatic pattern making for high quality custom clothes. Firstly, representative 3D body shape of men was modeled. Then the 3D model was divided into 3 shells, front, side and back. Among them, the front shell was divided into 4 blocks by bust line and princess line. Secondly, curves are generated on each block according to matrix combination by grid method. Then triangles were developed into 2D pieces by reflecting the 3D curve length. The grid was arranged to maintain outer curve length. Next, the area of developed pieces and block were calculated and difference ratio between the block area and the developed pieces' area is calculated. Also, area difference ratio by the number of triangles is calculated. The difference ratio was represented as graphs and optimal section is selected by the shape of graphs. The optimal matrix was set considering connection with other blocks. Curves of torso upper front shell were regenerated by the optimal matrix and developed into pieces. We validated it's suitability by comparing difference ratio between the block area and the developed pieces' area of optimal section. The results showed that there was no significant difference between block area and the pieces' area developed by optimal matrix. The optimal matrix for 2D developing could be characterized as two types according to block's shape characteristics, one is affected by triangle number, the other is affected by number of raws more than columns. Through this study, both the 2D pattern developing from 3D body shape and 3D modeling from 2D pattern is possible, so it's standardization also possible.

A Study of Senior Men's Dress Form Development 3D Digital Technology (3D 디지털 기술을 활용한 시니어 남성 기성복 피팅용 드레스폼 개발에 관한 연구)

  • Do, Wolhee;Choi, Eunhee
    • Fashion & Textile Research Journal
    • /
    • v.20 no.6
    • /
    • pp.722-732
    • /
    • 2018
  • This study was to develop a dress form that is highly representative of the body shapes of senior men in their 50s and 60s. And this research was compared the measurements and forms of three different dress forms available in the market, in order to analyze the body type and suitability and provide a standard for developing and utilizing the dress forms. After extracting the body shapes of the senior men's 3D shape, the body type that is curvature on the back prevalent among senior men, was chosen. The dress form was created as follows: 3D modeling and rendering, printing with a FDM-type 3D printer. The dress forms were 3D-scanned and the 3D data was analyzed - classification drop value, area deviation, compared horizontal section and vertical section. The results were as follows: This suggested that the area deviation amount at the chest and hip circumference levels was larger in the commercial products than in the dress form in this study, while that at the waist circumference level was larger in the dress form in this study. The vertical length of the lateral shoulder point-waist circumference was smaller, the side shape showed severe curvature on the back, and the waist circumference was larger in the senior men dress form than the commercial products. The dress form developed in this study reflected the body type of senior men and, therefore, were suitable for fitting when creating clothes for senior men.

Development of Ergonomic Leg Guard for Baseball Catchers through 3D Modeling and Printing

  • Lee, Hyojeong;Eom, Ran-i;Lee, Yejin
    • Journal of Fashion Business
    • /
    • v.20 no.3
    • /
    • pp.17-29
    • /
    • 2016
  • To develop baseball catcher leg guards, 3-dimensional (3D) methodologies, which are 3D human body data, reverse engineering, modeling, and printing, optimized guard design for representative positions. Optimization was based on analysis of 3D body surface data and subjective evaluation using 3D printing products. Reverse engineering was used for analysis and modeling based on data in three postures: standing, $90^{\circ}$ knee flexion, and $120^{\circ}$ knee flexion. During knee flexion, vertical skin length increased, with the thigh and knee larger in anterior area compared to the horizontal dimension. Moreover, $120^{\circ}$ knee flexion posture had a high radius of curvature in knee movement. Therefore, guard designs were based on increasing rates of skin deformation and numerical values of radius of curvature. Guards were designed with 3-part zoning at the thigh, knee, and shin. Guards 1 and 2 had thigh and knee boundaries allowing vertical skin length deformation because the shape of thigh and knee significantly affects to its performance. Guard 2 was designed with a narrower thigh and wider knee area than guard 1. The guards were manufactured as full-scale products on a 3D printer. Both guards fit better in sitting than standing position, and guard 2 received better evaluations than guard 1. Additional modifications were made and an optimized version (guard 3) was tested. Guard 3 showed the best fit. A design approach based on 3D data effectively determines best fitting leg guards, and 3D printing technology can customize guard design through immediate feedback from a customer.

A Study of 3D Virtual Fitting Model of Men's Lower Bodies in Forties by Morphing Technique. (모핑 기법을 활용한 40대 남성 하반신 가상모델 생성에 관한 연구)

  • Park, Sun-Mi;Nam, Yun-Ja;Choi, Kueng-Mi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.3 s.162
    • /
    • pp.463-474
    • /
    • 2007
  • With rapid expansion in e-retailing of apparel business, personalized fitting model service shows the possibility as the differentiated marketing strategy in cyber shopping. According as necessity of personalized fitting model construction rises, it is tried personalized fitting model creation in several fields such as computer engineering, mechanical engineering, information engineering. But, because existent study was concentrated only on human body modeling, it does not reflect average morphological characteristics of human body properly. In this study, we wish to examine if morphing is fit for expressing characteristic of average human body shape and suggest desirable morphing. We used 3-D scan data of 254 Korean middle aged men collected by Size Korea 2004. The result of this study are as follows: Lower body types were categorized by height hip girth and lower drop(hip girth-navel girth) which were main factors of lower body shape. Then each factor was divided into 3 groups respectively, 30% in the middle, over 30%, under 30%. In 27 groups, the group which belonged to 30% in the middle of height, 30% in the middle of hip girth, 30% in the middle of lower drop was selected as a representative group. We tested geometrical figure by differ volume, tilt, position of point. And we created a representative type of men's lower bodies by morphing the representative group and analyzed it's horizontal, vertical sections. A representative type which was created by morphing reflected a real body and changed realistically at the part of hip, crotch, calf muscle and so on. A cross sections of a representative type were similar to average cross sections of the representative group in size and shape. So it was proved that morphing was successful.

Development of a Body Size Measuring Process Utilizing 2D Images (2D 이미지를 활용한 인체치수 구현 프로세스 개발)

  • Jeong, Jae-Hoon;Ryu, Ji-Hyun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.12
    • /
    • pp.1853-1861
    • /
    • 2009
  • Body sizing of has been recognized as an important element affecting the degree of customer satisfaction in the apparel industry. Recent developments in IT technologies have enabled more studies in custom-made apparel systems that comply with the diverse demands from customers in many countries. Diverse methods to obtain personal physical size are being studied. This study estimates the accuracy by developing the system in which the data of length and girth can be calculated through changing a modeling by comparing the data with circular 3-dimensional physical configuration data. This information was computed from the process (such as the conversion to a standardize image) which utilizes the image capture of 2-dimensional three sides (front, side, and rear), contour tracing, and key-node selection and by realizing it in the real world.

Direct construction of a four-dimensional mesh model from a three-dimensional object with continuous rigid body movement

  • Otomo, Ikuru;Onosato, Masahiko;Tanaka, Fumiki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • In the field of design and manufacturing, there are many problems with managing dynamic states of three-dimensional (3D) objects. In order to solve these problems, the four-dimensional (4D) mesh model and its modeling system have been proposed. The 4D mesh model is defined as a 4D object model that is bounded by tetrahedral cells, and can represent spatio-temporal changes of a 3D object continuously. The 4D mesh model helps to solve dynamic problems of 3D models as geometric problems. However, the construction of the 4D mesh model is limited on the time-series 3D voxel data based method. This method is memory-hogging and requires much computing time. In this research, we propose a new method of constructing the 4D mesh model that derives from the 3D mesh model with continuous rigid body movement. This method is realized by making a swept shape of a 3D mesh model in the fourth dimension and its tetrahedralization. Here, the rigid body movement is a screwed movement, which is a combination of translational and rotational movement.

A STUDY FOR MODELING AND ANIMATION OF A HUMAN WITH BONE STRUCTURE AND CLOTHES

  • Suzuki, Tohru;Yamamoto, Toshiyuki;Nagase, Hiroshi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.821-824
    • /
    • 2009
  • A method to visualize human body is proposed for various human pose. The method affords three 3D-styles of the same body: firstly, one which wares clothes specified from pattern of dresses, second, body shape, lastly bone structure of body. For this objective, standard body data are prepared which is constructed from CT images. Individual body is measured by 3D body scanner. The present status of our research is limited to offer still images, though we are engaged to accommodate various poses.

  • PDF

Comparison of Avatar Posture Formation According to 3D Virtual Garment Modeling Programs -Focusing on Cycling Movements of High-School Male Cyclist-

  • Park, Hyunjeong;Do, Wolhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.965-977
    • /
    • 2021
  • The study aimed to analyze the functional differences in 3D virtual garment programs and compare body scan data with the corresponding 3D virtual models. We selected 3D virtual garment programs, formed virtual models in a representative size for high-school male cyclists, and analyzed them using the Design-X program. The results were as follows. In the 3D virtual garment programs, the anthropometric items for virtual model forming differed significantly from the standard anthropometric items suggested by Size Korea. Comparing the lower body scan data and virtual models formed by the 3D virtual garment programs, the biggest difference was in the shapes of the waist and hips, i.e., the flatness values of the waist and hips were different for each program in the cross-section view. In the lower body, a data-input-based program was needed for changing the exact measurement position of the waist circumference and hips' shape in detail. If a 3D virtual garment program provides functions for the virtual model's joint angle input and free motion transformation, it is expected to be widely used in the sportswear industry.