• Title/Summary/Keyword: 3D body measuring

Search Result 135, Processing Time 0.029 seconds

A Basic Study Contributes to Extract the Standardized 3D Body Data for Women Aged 60 and Older (노년 여성 체형의 표준화된 3차원 측정 데이터 추출을 위한 기초 연구)

  • ;;Susan p. Ashdown
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.2
    • /
    • pp.344-353
    • /
    • 2004
  • The purpose of this study was to offer the basis contributes to extract the standardized body data from 3D body measuring for women aged 60 and older. The WB4 of Cyberware was used, and the measuring program of 3D scanning data was 3DM. This study was focused to verify the reliability of 3D data and to offer the effective utilization of 3D measuring on the research for elderly women■s body. Subjects were 19 women aged 60 and older. And three women in late twenties and three dressforms for women were comparing subjects to analyze the signiscant difference by age or human body variable making error. First, 3D scanning was executed twice on each subject, but any significant difference was not appear between two scanning data. So we certifed we could get the consistent and reliable data from the 3D scanner used in this study. Second, the reliability of 3D measuring data was analyzed, and the error range which meant the difference between 3D data and traditional measuring data was analyzed. In elderly women, the significant difference between two data was appeared in 19 body parts. The 7 of 19 were concerned with armpit point. In young women, three significant difference were appeared, and in dressforms, any significant difference was not certified. From these results, we could certify that age or human body variable produced the difference between two data. Third, the data of elderly women from three measuring methods, 3D measuring, traditional measuring, and measuring on 2D photographs were compared. From the result, we found that the 3D measuring data was quite reliable for most body parts excluding some width parts. But in elderly women, there were some limitation to extract reliable data because of their unique body characteristics. In order to be a role of the effective measuring method, the 3D measuring protocol reflected the body characteristics of each age or gender had to be prepared.

Comparative Analysis of Body Measurement and Fit Evaluation between 2D Direct Body Measuring and 3D Body Scan Measuring (직접측정과 3차원 측정에 따른 인체치수 및 의복 착장 비교분석)

  • Istook, Cynthia L.;Lim, Ho-Sun;Chun, Jong-Suk
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.6
    • /
    • pp.1347-1358
    • /
    • 2011
  • This study purposed to analyze differences in body measurement between the 2D direct body measuring method and the 3D body scan measuring method and to perform the appearance evaluation and cross-sectional evaluation of the fit of pants to which body measurements obtained by each measuring method were applied. Body measuring was conducted in 10 women in their 20s-30s using 2D direct body measuring and 3D automatic measuring with Hamamatsu body scanner. Among the 10 women, 3 participated in experimental garment wearing. Experimental pants were made using their 2D direct body measurements and 3D automatic measurements, and wearing tests were performed through expert evaluation and cross-sectional evaluation. The results of the experiment were as follows. According to the results of comparative analysis on differences between 2D direct body measurements and 3D scan measurements, 3D automatic measurements were significantly larger in bust circumference, ankle circumference, armscye circumference, shoulder length, scye depth, and arm length. As circumferences measured with the 3D body scanner were somewhat larger than directly measured ones, it is suggested to adjust ease when using existing pattern making methods. We prepared experimental garments by the same pattern making method through applying body measurements obtained with the two measuring methods, and assessed the fit of the garment comparatively through expert evaluation and 3D scan cross-sectional evaluation. According to the results, 2D-pants using 2D direct body measurements was slightly tighter than 3D-pants using 3D measurements in waist circumference, hip circumference, and abdominal circumference. In the results of comparing appearance in terms of the fit of the experimental garment in each subject, significant difference was observed in most of the compared items. This result suggests that 3D automatic body measuring data may show different accuracy according to body shape and therefore it is necessary to examine difference between 2D direct body measurements and 3D automatic measurements according to body shape.

New Breast Measurement Technique and Bra Sizing System Based on 3D Body Scan Data

  • Oh, Seolyoung;Chun, Jongsuk
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.299-311
    • /
    • 2014
  • Objective: The aim of this study was to develop a method for measuring breast size from three-dimensional (3D) body scan image data. Background: Previous bra studies established reference points by directly contacting the subject's naked skin to determine the boundary of the breast. But some subjects were uncomfortable with these types of measurements. This study examined noncontact methods of extracting breast reference points from 3D body scan data that were collected while subjects were wearing standardized soft bras. Method: 3D body scan data of 32 Korean women were analyzed. The subjects were selected from the Size Korea 2010 study. The breast landmarks were identified by graphic analyses of slicing contour lines on 3D body scan data. Results: Three methods determining bra cup size were compared. The M1 and M2 methods determined cup size by calculating the difference between bust girth and under-bust girth. The M3 method determined bra cup size by measuring breast arc length. Conclusion: The researchers proposed an anthropometric bra cup sizing system with the breast arc length (M3 method). It was measured from the geometrically defined landmarks on the 3D body scan slicing contour lines. The new bra cup size was highly correlated with breast depth. Application: The noncontact measuring method used in this study can be applied to the ergonomic studies measuring sensitive body parts.

An Accuracy Analysis of the 3D Automatic Body Measuring Machine (3차원 자동체형계측기 정밀도 검사)

  • Jeon, Soo-Hyung;Kwon, Suk-Dong;Park, Se-Jung;Kim, Jung-Yang;Song, Jung-Hoon;Kim, Hyun-Jin;Kim, Jong-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2008
  • 1. Objectives The Body Shape and Feature is one of the important standard for classification of Sasang Constitutions. In order to evaluate one's Body Shape and Feature objectively we have been developing the Body Measuring Machine. Now we develop the 3D Automatic Body Measuring Machine(3D-ABMM). So we make an analysis of the 3D-ABMM's Accuracy. 2. Methods By using the 3D-ABMM and Vivid 9i(3D laser scanner, Konica Minolta) we have a surface scan of the three objects which are the upper body of the female and male Manikin and a male model. We overlap each scan data using the RapidForm2006 (3D scan data solution, INUS Technology) and calculate the average distance and standard deviation between the same point of each scan data. 3. Results and Conclusions In the female Manikin, the average distance is 0.84mm and the standard deviation is 1.16mm and the maximum distance is 10.68mm. In the male Manikin, the average distance is 1.12mm and the standard deviation is 1.19mm and the maximum distance is 12.00mm. In the male model, the average distance is 3.26mm and the standard deviation is 2.59mm and the maximum distance is 12.75mm. From the results, 3D-ABMM has good accuracy for scanning body and will be a usable hardware of the 3D Automatic Body Analysis Machine.

  • PDF

Diagnosis Accuracy Rate Comparative Study of Each Sasang Constitutions and Sex Distinction by Body Measurement Method between 3D Body Measuring Instrument and Hand-operating (3D체형측정기와 수동측정 방법간의 사상체질별 ${\cdot}$ 성별 진단정확률 비교연구)

  • Kwon, Suk-Dong;Sul, Yu-Kyung;Lee, Eui-Ju;Kim, Kyu-Kon;Kim, Jong-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.1
    • /
    • pp.60-77
    • /
    • 2007
  • 1. Objectives This is the comparative study with hand-operated measurement method and Automatic measurement method, in order to convert the automatic measurement method. 2. Methods We measured the body of patients(hand-operated Width 5 Places and hand-operated circumference 8 place,Automatic Width 5 and automatic circumference 8 place by 3D body measuring instrument) and analyzed the anthropometric data divding into sex&age. 362 patient's data are used in the analysis. 3. Results and Conclusions 1) 1th circumference variable which standing was not a sasang constitutional difference. 2) Diagnostic accuracy rate of the body measurement was 50-80%. 3) Diagnostic accuracy rate of man is higher than Diagnostic accuracy rate of women 4) Diagnostic accuracy rate of Automatic & hand-operated measuring was not a big difference.

  • PDF

Analysis of the Ease in Basic Bodice Pattern Using 3-D Measuring Instrument (3차원 계측장치를 이용한 길 원형의 여유량 분석)

  • Shim, Kue-Nam;Suh, Jung-Kwon;Lee, Won-Ja
    • Fashion & Textile Research Journal
    • /
    • v.2 no.3
    • /
    • pp.239-245
    • /
    • 2000
  • The purpose of this study was for analysis of ease about basic bodice pattern, as the first step of the research process for the drawing method of basic bodice for women in their twenties. The five selected basic bodice were made and they were worn by FRP body The garment space of each bodice was measured by analysis of the garment space of each section in figure of polymerization of cross section by a 3-D measuring instrument. The research suggests that this compared analysis is an objective reference. This analysis not only of the area of cross section of garment space and ease but also of the girth of the body shape and wearing shape, using the PAD system and 3-D measuring instrument, can be helpful in making garment patterns.

  • PDF

Analysis of Body Surface Change from 3D Scan Data of Men's Upper Bodies in Twenties - Focus on Application of Motorcycle Jacket Pattern - (3차원 인체데이터에 의한 20대 성인남성 상반신 체표변화 분석 - 모터사이클복 패턴설계시 적용을 중심으로 -)

  • Do, Wol-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.4
    • /
    • pp.530-541
    • /
    • 2008
  • The early stage of 3D anthropometry data has been used to obtain qualitative rather than quantitative information. However recent 3D body scanners as a common research tool for anthropormatric measurments have made it possible to obtain body surface data of sufficient resolution and accuracy. The purpose of this study is finally to develop motorcycle jacket for enhanced comfort and fit, to test the accuracy and reliability of 3D measurments of motorcycle riding posture, and to analyze the change in 20's adult male's body surface measurements between the standard anthropometric position and motorcycle riding posture. The results of this study were as follows: There were no significant differences between the study and Size Korea measurments in total traditional measuring items and most of measuring items, such as length, circumference antropometric items and interscye items though not waist back length and upper arm circumference. A comparison of 3D body surface measurments in the two different measuring postures, the bodysurface measurments such as waist front length, biacromion length, front interscye, arm length, underarm length in the motorcycle riding posture decreased than that in basic posture, whereas waist back length, back interscye, C.T.W length increased. The body surface measurments such as chest, bust, upper circumference in the motorcycle riding posture decreased than that in basic posture, whereas neck, waist, hip, elbow circumference increased.

A System for Measuring 3D Human Bodies Using the Multiple 2D Images (다중 2D 영상을 이용한 3D 인체 계측 시스템)

  • 김창우;최창석;김효숙;강인애;전준현
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.5
    • /
    • pp.1-12
    • /
    • 2003
  • This paper proposes a system for measuring the 3D human bodies using the multiple 2D images. The system establishes the multiple image input circumstance from the digital camera for image measurement. The algorithm considering perspective projection leads us to estimate the 3D human bodies from the multiple 2D images such as frontal. side and rear views. The results of the image measurement is compared those of the direct measurement and the 3D scanner for the total 40 items (12 heights, 15 widths and 13 depths). Three persons measure the 40 items using the three measurement methods. In comparison of the results obtained among the measurement methods and the persons, the results between the image measurement and the 3D scanner are very similar. However, the errors for the direct measurement are relatively larger than those between the image measurement and the 3D scanner. For example, the maximum errors between the image measurement and the 3D scanner are 0.41cm in height, 0.39cm in width and 0.95cm in depth. The errors are acceptable in body measurement. Performance of the image measurement is superior to the direct. because the algorithm estimates the 3D positions using the perspective projection. In above comparison, the image measurement is expected as a new method for measuring the 3D body, since it has the various advantages of the direct measurement and 3D scanner in performance for measurement as well as in the devices, cost, Portability and man power.

Computation of Ease-Rate in Basic Bodice Pattern by Analysis of Multiple Cross Section, Using 3-D Measuring Instrument (착의 단면 중합도 분석에 의한 길 원형의 여유률 산출 - 3차원 형상 계측기에 의한 -)

  • Shim, Kue-Nam;Kim, Jin-Sun;Lee, Womn-Ja
    • Fashion & Textile Research Journal
    • /
    • v.2 no.4
    • /
    • pp.360-365
    • /
    • 2000
  • This research is the trial for the computation of the ease-rate for the bodice pattern. The result of the analysis about the cross section figures of garment space by using a 3-D measuring instrument is that: The garment space of each bodice by each body size is definite. In the figure of cross section of the basic lines, an area of cross section of garment space and length of cross section of garment space are not increased in proportion to an area of cross section of the body. The ease rate is the same no matter that flat-rate of the body is same or different. The ease-rate is computed by length of cross section of garment space that is in proportion to the radius of the body.

  • PDF

Improvement of Cross Sectional Distance Measurement Method of 3D Human Body (3차원 인체 형상의 공극거리 측정 방법 효율성 향상을 위한 연구)

  • Kim, Min-Kyoung;Nam, Yun-Ja;Han, Hyun-Sook;Choi, Young-Lim
    • Fashion & Textile Research Journal
    • /
    • v.13 no.6
    • /
    • pp.966-971
    • /
    • 2011
  • This study is designed to develop programs that analyze the distance of clothes from human skin and cross-sectional body figures based on 3D human body scan data, and to verify accuracy and efficiency of the program so that it can be used for clothing fit evaluation and 3D human body research. The auto cross-sectional imaging program was developed by using Visual C++ and OpenGL, and the 3D human body scan data were adopted to measure the space between skin and clothing. The space measurements were obtained by two widely used programs, RapidForm and AutoCAD, and a program devised by the researchers of this study. Measuring time and space measurements from different programs were compared in order to verify accuracy and efficiency of the newly-devised program. As a result, no significant difference was found in the measurements. However, the required time to measure one cross section was different within the significance level of 0.05, and the differences become more remarkable as the number of measuring and the angle of space between skin and clothing increase. Therefore, the program developed by this study is expected to be useful for research on body shapes and fit evaluation based on 3D human body scan data in the fashion field.