• Title/Summary/Keyword: 3D automated measurement

Search Result 50, Processing Time 0.033 seconds

Integration of 3D Laser Scanner and BIM Process for Visualization of Building Defective Condition (3D 레이저 스캐닝과 BIM 연동을 통한 건축물 노후 상태 정보 시각화 프로세스)

  • Choi, Moonyoung;Kim, Sangyong;Kim, Seungho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • The regular assessment of a building is important to understand structural safety and latent risk in the early stages of building life cycle. However, methods of traditional assessment are subjective, atypical, labor-intensive, and time-consuming and as such the reliability of these results has been questioned. This study proposed a method to bring accurate results using a 3D laser scanner and integrate them in Building Information Modeling (BIM) to visualize defective condition. The specific process for this study was as follows: (1) semi-automated data acquisition using 3D laser scanner and python script, (2) scan-to-BIM process, (3) integrating and visualizing defective conditions data using dynamo. The method proposed in this study improved efficiency and productivity in a building assessment through omitting the additional process of measurement and documentation. The visualized 3D model allows building facility managers to make more effective decisions. Ultimately, this is expected to improve the efficiency of building maintenance works.

Calibrating Stereoscopic 3D Position Measurement Systems Using Artificial Neural Nets (3차원 위치측정을 위한 스테레오 카메라 시스템의 인공 신경망을 이용한 보정)

  • Do, Yong-Tae;Lee, Dae-Sik;Yoo, Seog-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.418-425
    • /
    • 1998
  • Stereo cameras are the most widely used sensing systems for automated machines including robots to interact with their three-dimensional(3D) working environments. The position of a target point in the 3D world coordinates can be measured by the use of stereo cameras and the camera calibration is an important preliminary step for the task. Existing camera calibration techniques can be classified into two large categories - linear and nonlinear techniques. While linear techniques are simple but somewhat inaccurate, the nonlinear ones require a modeling process to compensate for the lens distortion and a rather complicated procedure to solve the nonlinear equations. In this paper, a method employing a neural network for the calibration problem is described for tackling the problems arisen when existing techniques are applied and the results are reported. Particularly, it is shown experimentally that by utilizing the function approximation capability of multi-layer neural networks trained by the back-propagation(BP) algorithm to learn the error pattern of a linear technique, the measurement accuracy can be simply and efficiently increased.

  • PDF

Restoring Motion Capture Data for Pose Estimation (자세 추정을 위한 모션 캡처 데이터 복원)

  • Youn, Yeo-su;Park, Hyun-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.5-7
    • /
    • 2021
  • Motion capture data files for pose estimation may have inaccurate data depending on the surrounding environment and the degree of movement, so it is necessary to correct it. In the past, inaccurate data was restored with post-processing by people, but recently various kind of neural networks such as LSTM and R-CNN are used as automated method. However, since neural network-based data restoration methods require a lot of computing resource, this paper proposes a method that reduces computing resource and maintains data restoration rate compared to neural network-based method. The proposed method automatically restores inaccurate motion capture data by using posture measurement data (c3d). As a result of the experiment, data restoration rates ranged from 89% to 99% depending on the degree of inaccuracy of the data.

  • PDF

A Study of Applications of 3D Body Scanning Technology - Focused on Apparel Industry - (3차원 바디 스캐너를 활용한 가상착의에 관한 인식 조사 - 업체 실무자 및 소비자를 대상으로 -)

  • Paek, Kyung-Ja;Lee, Jeong-Ran;Kim, Mi-Sung
    • Korean Journal of Human Ecology
    • /
    • v.18 no.3
    • /
    • pp.719-727
    • /
    • 2009
  • The ultimate success of commercial applications of body scan data in the apparel industry will be consumers' substantial applications such as automated custom fit, size prediction, virtual try-on, personal shopper services (Loker, S. et al., 2004). In this study, we surveyed fifty consumers and forty-seven apparel industry workers about their recognition and interest in 3D body scanning and virtual try-on. The results are as follows: 55% of the apparel industry workers has recognized 3D body scanning as a convenient technology, but do not know how to use it. To the questions regarding virtual try-on, 53% of the workers give positive answers. The consumers have a more positive view on virtual try-on than the workers do. The workers predict that the application of 3D body scan technology to the apparel industry could offer customers helpful information in their clothing selection by using virtual images of various size and style, and increase mass production of MTM(Made-To-Measure). The answers from the male consumers in their twenties indicate that virtual try-on is useful by 88% on offline shopping and by 100% on online shopping. 53% of the workers and 68% of the consumers gave answers that just by virtual try-on they could judge the quality of the apparel products and purchase them. Absolutely 3D virtual try-on is an effective tool for online shoppers. 85% of the workers anticipate applications of the 3D body scanning also in 'body measurement', 'custom pattern development' as well as 'virtual try-on' in the near future. With the positive reactions and the stimulating interests in virtual try-on, the conditions of contemporary world encourage more active researches and wide usages of the technology in apparel industry.

Automated Derivation of Cross-sectional Numerical Information of Retaining Walls Using Point Cloud Data (점군 데이터를 활용한 옹벽의 단면 수치 정보 자동화 도출)

  • Han, Jehee;Jang, Minseo;Han, Hyungseo;Jo, Hyoungjun;Shin, Do Hyoung
    • Journal of KIBIM
    • /
    • v.14 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • The paper proposes a methodology that combines the Random Sample Consensus (RANSAC) algorithm and the Point Cloud Encoder-Decoder Network (PCEDNet) algorithm to automatically extract the length of infrastructure elements from point cloud data acquired through 3D LiDAR scans of retaining walls. This methodology is expected to significantly improve time and cost efficiency compared to traditional manual measurement techniques, which are crucial for the data-driven analysis required in the precision-demanding construction sector. Additionally, the extracted positional and dimensional data can contribute to enhanced accuracy and reliability in Scan-to-BIM processes. The results of this study are anticipated to provide important insights that could accelerate the digital transformation of the construction industry. This paper provides empirical data on how the integration of digital technologies can enhance efficiency and accuracy in the construction industry, and offers directions for future research and application.

Three Dimensional Measurement of Ideal Trajectory of Pedicle Screws of Subaxial Cervical Spine Using the Algorithm Could Be Applied for Robotic Screw Insertion

  • Huh, Jisoon;Hyun, Jae Hwan;Park, Hyeong Geon;Kwak, Ho-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.376-381
    • /
    • 2019
  • Objective : To define optimal method that calculate the safe direction of cervical pedicle screw placement using computed tomography (CT) image based three dimensional (3D) cortical shell model of human cervical spine. Methods : Cortical shell model of cervical spine from C3 to C6 was made after segmentation of in vivo CT image data of 44 volunteers. Three dimensional Cartesian coordinate of all points constituting surface of whole vertebra, bilateral pedicle and posterior wall were acquired. The ideal trajectory of pedicle screw insertion was defined as viewing direction at which the inner area of pedicle become largest when we see through the biconcave tubular pedicle. The ideal trajectory of 352 pedicles (eight pedicles for each of 44 subjects) were calculated using custom made program and were changed from global coordinate to local coordinate according to the three dimensional position of posterior wall of each vertebral body. The transverse and sagittal angle of trajectory were defined as the angle between ideal trajectory line and perpendicular line of posterior wall in the horizontal and sagittal plane. The averages and standard deviations of all measurements were calculated. Results : The average transverse angles were $50.60^{\circ}{\pm}6.22^{\circ}$ at C3, $51.42^{\circ}{\pm}7.44^{\circ}$ at C4, $47.79^{\circ}{\pm}7.61^{\circ}$ at C5, and $41.24^{\circ}{\pm}7.76^{\circ}$ at C6. The transverse angle becomes more steep from C3 to C6. The mean sagittal angles were $9.72^{\circ}{\pm}6.73^{\circ}$ downward at C3, $5.09^{\circ}{\pm}6.39^{\circ}$ downward at C4, $0.08^{\circ}{\pm}6.06^{\circ}$ downward at C5, and $1.67^{\circ}{\pm}6.06^{\circ}$ upward at C6. The sagittal angle changes from caudad to cephalad from C3 to C6. Conclusion : The absolute values of transverse and sagittal angle in our study were not same but the trend of changes were similar to previous studies. Because we know 3D address of all points constituting cortical shell of cervical vertebrae. we can easily reconstruct 3D model and manage it freely using computer program. More creative measurement of morphological characteristics could be carried out than direct inspection of raw bone. Furthermore this concept of measurement could be used for the computing program of automated robotic screw insertion.

Catenary Measurement System for Real-Time Automated Diahnosis (실시간 자동화 진단을 위한 전차선 검측시스템)

  • Kim, Jeong-Yeon;Park, Jong-Gook;Lee, Byeong-Gon;Hong, Hyun-Pyo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1020-1026
    • /
    • 2011
  • In this paper, we propose a method that measures the height and stagger of an catenary using the laser profile images. One line laser and area scanner CCD cameras are used. To quickly and accurately extract, from a photographed image, the area of the overhead line on which the line laser is shone, we consider the established fact that the catenary is the lowest among the electric wires. Here we are solving the the distance to the catenary if we know the distance the camera is from the ground and the angle of the catenary in the field of view. The angle will be related to the number of pixels in the image. This pixels per degree is a constant for the camera. Also, because of the different pixel resolution of the camera according to the overhead line position, we compensate the measurement result through camera calibration.

  • PDF

Automation of Bio-Industrial Process Via Tele-Task Command(I) -identification and 3D coordinate extraction of object- (원격작업 지시를 이용한 생물산업공정의 생력화 (I) -대상체 인식 및 3차원 좌표 추출-)

  • Kim, S. C.;Choi, D. Y.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Major deficiencies of current automation scheme including various robots for bioproduction include the lack of task adaptability and real time processing, low job performance for diverse tasks, and the lack of robustness of take results, high system cost, failure of the credit from the operator, and so on. This paper proposed a scheme that could solve the current limitation of task abilities of conventional computer controlled automatic system. The proposed scheme is the man-machine hybrid automation via tele-operation which can handle various bioproduction processes. And it was classified into two categories. One category was the efficient task sharing between operator and CCM(computer controlled machine). The other was the efficient interface between operator and CCM. To realize the proposed concept, task of the object identification and extraction of 3D coordinate of an object was selected. 3D coordinate information was obtained from camera calibration using camera as a measurement device. Two stereo images were obtained by moving a camera certain distance in horizontal direction normal to focal axis and by acquiring two images at different locations. Transformation matrix for camera calibration was obtained via least square error approach using specified 6 known pairs of data points in 2D image and 3D world space. 3D world coordinate was obtained from two sets of image pixel coordinates of both camera images with calibrated transformation matrix. As an interface system between operator and CCM, a touch pad screen mounted on the monitor and remotely captured imaging system were used. Object indication was done by the operator’s finger touch to the captured image using the touch pad screen. A certain size of local image processing area was specified after the touch was made. And image processing was performed with the specified local area to extract desired features of the object. An MS Windows based interface software was developed using Visual C++6.0. The software was developed with four modules such as remote image acquisiton module, task command module, local image processing module and 3D coordinate extraction module. Proposed scheme shoed the feasibility of real time processing, robust and precise object identification, and adaptability of various job and environments though selected sample tasks.

  • PDF

BIM and Thermographic Sensing: Reflecting the As-is Building Condition in Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.4
    • /
    • pp.16-22
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. Several case studies were conducted to experimentally evaluate their impact on BIM-based energy analysis to calculate energy load. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.

Updating BIM: Reflecting Thermographic Sensing in BIM-based Building Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.532-536
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.

  • PDF