• Title/Summary/Keyword: 3D augmentation

Search Result 104, Processing Time 0.025 seconds

Dexamethasone Induces $Fc{\gamma}RIIb$ Expression in RBL-2H3 Cells

  • Silwal, Prashanta;Lee, Mi-Nam;Lee, Choong-Jae;Hong, Jang-Hee;NamGung, Uk;Lee, Zee-Won;Kim, Jinhyun;Lim, Kyu;Kweon, Gi Ryang;Park, Jong Il;Park, Seung Kiel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.393-398
    • /
    • 2012
  • Mast cells are involved in allergic responses, protection against pathogens and autoimmune diseases. Dexamethasone (Dex) and other glucocorticoids suppress $Fc{\varepsilon}RI$-mediated release of inflammatory mediators from mast cells. The inhibition mechanisms were mainly investigated on the downstream signaling of Fc receptor activations. Here, we addressed the effects of Dex on Fc receptor expressions in rat mast cell line RBL-2H3. We measured mRNA levels of Fc receptors by real-time PCR. As expected, Dex decreased the mRNA levels of activating Fc receptor for IgE ($Fc{\varepsilon}R$) I and increased the mRNA levels of the inhibitory Fc receptor for IgG $Fc{\gamma}RIIb$. Interestingly, Dex stimulated transcriptions of other activating receptors such as Fc receptors for IgG ($Fc{\gamma}R$) I and $Fc{\gamma}RIII$. To investigate the mechanisms underlying transcriptional regulation, we employed a transcription inhibitor actinomycin D and a translation inhibitor cycloheximide. The inhibition of protein synthesis without Dex treatment enhanced $Fc{\gamma}RI$ and $Fc{\gamma}RIII$ mRNA levels potently, while $Fc{\varepsilon}RI$ and $Fc{\gamma}RIIb$ were minimally affected. Next, we examined expressions of the Fc receptors on cell surfaces by the flow cytometric method. Only $Fc{\gamma}RIIb$ protein expression was significantly enhanced by Dex treatment, while $Fc{\gamma}RI$, $Fc{\gamma}RIII$ and $Fc{\varepsilon}RI$ expression levels were marginally changed. Our data showed, for the first time, that Dex regulates Fc receptor expressions resulting in augmentation of the inhibitory receptor $Fc{\gamma}RIIb$.

In Vivo Immunological Activity in Fermentation with Black Rice Bran (유색미 미강발효물의 면역활성 효과)

  • Kim, Dong-Ju;Ryu, Su-Noh;Han, Sang-Jun;Kim, Hwa-Young;Kim, Jung-Hak;Hong, Seong-Gil
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.3
    • /
    • pp.273-281
    • /
    • 2011
  • Rice bran is byproducts of the hulling of rice, an important food resource in Korea. Various studies have been reported immune-enhancing effects of rice bran cultured with Lentinus edodes. In particular black rice bran contains anthocyanin, and the effects of antioxidant have been reported. The objective of the this study was to investigate the possible immune-enhancing effects of black rice bran substance extracted from a submerged culture of Lentinus edodes with black rice bran (crude fermentation-polysaccharide, CFP) and products(crude fermentation-polysaccharide-S. cerevisiae CFP-S, crude fermentation-polysaccharide-L. gasseri, CFP-L) which are of secondary fermentation of by using Saccharomyces cerevisiae and Lactobacillus gasseri in the Blab/c male mice. We found that supplementation of CFP, CFP-S and CFP-L enhanced macrophage and splenocyte proliferation compared to the control group(NC) in mice. Also, we measured the concentration of cytokines(IFN-${\gamma}$, TNF-${\alpha}$, IL-6) secreted by activated macrophage and splenocyte. The results of the experiment are that supplementation of CFP and CFP-S increased the macrophage and splenocyte proliferation compared to the control group but supplementation of CFP-L decreased the splenoyte proliferation compared to the control group(without mitogen and treated with LPS). When macrophage and splenocyte were stimulated by CFP and CFP-S supplementation, it was increased IFN-${\gamma}$, TNF-${\alpha}$ and IL-6 concentration compared with the control group. These results suggest that the capacity of CFP and CFP-S seem to act as a potent immune modulator causing augmentation of immune cell activity, and enhance the immue function through regulating cytokine production capacity by activated macrophage and splenocyte in mice.

Apoptotic Effect of Co-Treatment with Valproic Acid and 17AAG on Human Osteosarcoma Cells (Valproic acid와 17AAG의 병용처리가 사람골육종세포에 미치는 세포자멸사 효과에 대한 연구)

  • Park, Jun-Young;Park, Se-Jin;Kim, In-Ryoung;Park, Bong-Soo;Jeong, Sung-Hee;Ko, Myung-Yun;Ahn, Yong-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2011
  • Valproic acid (VPA) is a well-known anticonvulsive agent and has been used in the treatment of epilepsy for almost 30 years. VPA emerged in 1997 as an antineoplastic agent. And it is known that antitmor activity of VPA is associated with its targeted at histone deacetylases. 17AAG, Inhibition of HSP90 leads to the proteasome degradation of the HSP90 client proteins, such as Akt, Raf/Ras, Erk, VEGF, cyclin D and p53, and causes potent antitumor activity. It is reported that 17AAG-induced HSP90 inhibition results in prevention of cell proliferation and induction of apoptosis in several types of cancer. This study was undertaken to investigate the synergistic apoptotic effect of co-treatment with the histone deacetylases inhibitor, VPA and the HSP90 inhibitor, 17AAG on human osteosarcoma (HOS) cells. Cell viability was evaluated by trypan-blue exclusion. Induction and augmentation of apoptosis were confirmed by Hoechst staining, flow cytometry (DNA hypoploidy and MMP change), Westen blot analysis and immunofluorescent staining. In this study, HOS cells co-treated with VPA and 17AAG showed several lines of apoptotic manifestation such as nuclear condensations, the reduction of MMP, the decrease of DNA content, the release of cytochrome c into cytosol, the translocation of AIF onto nuclei, and activation of caspase-3, caspase-7 and PARP whereas each single treated HOS cells did not. Although the single treatment of 1 mM VPA or 0.5 ${\mu}M$ 17AAG for 48 h did not induce apoptosis, the co-treatment with them induced prominently apoptosis. Therefore our data in this study provide the possibility that combination therapy with VPA and 17AAG could be considered as a novel therapeutic strategy for human osteosarcoma.

Study of Rat Mammary Epithelial Stem Cells In Vivo and In Vitro (생체 및 시험관에서 유선 상피 모세포의 분리와 동정)

  • Nam Deuk Kim;Kee-Joo Paik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.470-486
    • /
    • 1995
  • Mammary epithelial cells contain a subpopulation of cells with a large proliferativ potential which are responsible for the maintenance of glandular cellularity and are the progenitor cells of mammary cancer. These clonogens give rise to multicellular clonal alveolar or ductal units(AU or DU) on transplantation and hormonal stimulation. To isolate putative mammary clonogens, enzymatically monodispersed rat mammary epithelial cells from organoid cultures and from intact glands are sorted by flow cytometry according to their affinity for FITC labeled peanut lectin(PNA) and PE labeled anti-Thy-1.1 antibody(Thy-1.1) into four subpopulations : cells negative to both PNA and Thy-1.1(B-), PNA+cells, Thy-1.1+cells, and cells positive to both reagents(B+). The in vivo transplantation assays indicate that the clonogenic fractions of PNA+cells from out-growths of organoids in primary cultures for three days in complete hormone medium(CHM) are significantly higher than those of cells from other subpopulations derived from cultrues or from intact glands. Extracellular matrix(ECM) is a complex of several proteins that regulated cell function ; its role in cell growth and differentiation and tissue-specific gene expression. It can act as a positive as well as a negative regulator of cellular differentiation depending on the cell type and the genes studied. Regulation by ECM is closely interrelated with the action of other regulators of cellular function, such as growth factors and hormones. Matrigel supports the growth and development of several different multicellular colonies from mammary organoids and from monodispersed epithelial cells in culture. Several types of colonies are observed including stellate colonies, duct-like structures, two- and three-dimensional web structures, squamous organoids, and lobulo-duct colonies. Organoids have the greatest proliferative potential and formation of multi-cellular structures. Phase contrast micrographs demonstrate extensive intracellular lipid accumulation within the web structures and some of duct-like colonies. At the immunocytochemical and electron micrograph level, casein proteins are predominantly localized near the apical surface of the cells or in the lumen of duct-like or lobulo-duct colonies. Squamous colonies are comprised of several layers of squamous epithelium surrounding keratin pearls as is typical fo squamous metaplasia(SM). All-trans retinoic acid(RA) inhibits the growth of SM. The frequency of lobulo-ductal colony formation increased with the augmentation of RA concentration in these culture conditions. The current study models could provide powerful tools not only for understanding cell growth and differentiation of epithelial cells, but also for the isolation and characterization of mammary clonogenic stem cells.

  • PDF