• Title/Summary/Keyword: 3D Virtual Model

Search Result 598, Processing Time 0.031 seconds

Two-Stage Evolutionary Algorithm for Path-Controllable Virtual Creatures (경로 제어가 가능한 가상생명체를 위한 2단계 진화 알고리즘)

  • Shim Yoon-Sik;Kim Chang-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.682-691
    • /
    • 2005
  • We present a two-step evolution system that produces controllable virtual creatures in physically simulated 3D environment. Previous evolutionary methods for virtual creatures did not allow any user intervention during evolution process, because they generated a creature's shape, locomotion, and high-level behaviors such as target-following and obstacle avoidance simultaneously by one-time evolution process. In this work, we divide a single system into manageable two sub-systems, and this more likely allowsuser interaction. In the first stage, a body structure and low-level motor controllers of a creature for straight movement are generated by an evolutionary algorithm. Next, a high-level control to follow a given path is achieved by a neural network. The connection weights of the neural network are optimized by a genetic algorithm. The evolved controller could follow any given path fairly well. Moreover, users can choose or abort creatures according to their taste before the entire evolution process is finished. This paper also presents a new sinusoidal controller and a simplified hydrodynamics model for a capped-cylinder, which is the basic body primitive of a creature.

Digital Restoration of Missing Parts and Production of Three-dimensional Printed Replicas the Stone Buddhas in Four Directions in Hwajeon-ri, Yesan, Korea (예산 화전리 석조사면불상의 결손부 디지털 복원 및 3차원 프린팅 복제모형 제작)

  • Lee Seungjun;Jo Younghoon;Kim Jiho;Cho Hyosik
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.99-110
    • /
    • 2023
  • The stone fragments that are missing from the stone cultural heritage have limited use beyond being directly fitted to identify their original position, as they are relatively heavy and bulky, and there is the further risk of secondary physical damage during manual work. Therefore, in this study, morphological relationships between the missing parts and the stone fragments were identified through digital restoration, and a three-dimensional (3D) printed replica was created for use at the exhibition for Stone Buddhas in Four Directions in Hwajeon-ri, Yesan, where 72 stone fragments had been excavated together. First, for the digital restoration, stone fragments of similar shapes were selected after the coordinates of the 3D scanning model were aligned in virtual space. In addition, the stone fragments were printed using a 3D printer to check whether they were physically related to the missing parts. Thus, the original positions of a total of nine stone fragments were identified. To utilize these research results in the exhibition, a 1:1 replica of the Stone Buddhas in Four Directions was produced using 3D printing technology, and the nine stone fragments were also restored to their original positions. The digital technology used in this study is of great importance in that it not only made up for the limitations of the direct manual method but also suggested the possibility of expanding its application to the fields of documentation, restoration, and replication of similar cultural heritage.

A Survey of Yeosu Sado Dinosaur Tracksite and Utilization of Educational Materials using 3D Photogrammetry (3D 사진측량법을 이용한 여수 사도 공룡발자국 화석산지 조사 및 교육자료 활용방안)

  • Jo, Hyemin;Hong, Minsun;Son, Jongju;Lee, Hyun-Yeong;Park, Kyeong-Beom;Jung, Jongyun;Huh, Min
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.662-676
    • /
    • 2021
  • The Yeosu Sado dinosaur tracksite is well known for many dinosaur tracks and research on the gregarious behavior of dinosaurs. In addition, various geological and geographical heritage sites are distributed on Sado Island. However, educational field trips for students are very limited due to accessibility according to its geological location, time constraints due to tides, and continuous weathering and damage. Therefore, this study aims to generate 3D models and images of dinosaur tracks using the photogrammetric method, which has recently been used in various fields, and then discuss the possibility of using them as paleontological research and educational contents. As a result of checking the obtained 3D images and models, it was possible to confirm the existence of footprints that were not previously discovered or could not represent details by naked eyes or photos. Even previously discovered tracks could possibly present details using 3D images that could not be expressed by photos or interpretive drawings. In addition, the 3D model of dinosaur tracks can be preserved as semi-permanent data, enabling various forms of utilization and preservation. Here we apply 3D printing and mobile augmented reality content using photogrammetric 3D models for a virtual field trip, and these models acquired by photogrammetry can be used in various educational content fields that require 3D models.

A Case Study on the Construction of 3D Geo-spatial Information for Digital Twin Implementation (디지털 트윈 구현을 위한 3차원 공간정보 구축사례 연구)

  • KIM, Seung-Yub;LEE, Ho-Hyun;CHOI, Eun-Soo;GO, Je-Ung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.146-160
    • /
    • 2020
  • In the 4th industrial revolution, research on solving urban problems using ICT technology is emerging. Representatively, research is being conducted mainly focusing on smart cities. 3D geo-spatial. Various case studies on smart cities are being conducted to solve urban problems, and in order to effectively implement smart cities, it is implemented on the basis of a digital twin interconnecting physical and virtual environments. To implement a digital twin, the concept of space is essential, and spatial information that composes the real world is also essential. Therefore, in order to implement the digital twin, this study conducted a study on the construction and modeling of 3D geo-spatial information based on the national spatial information establishment regulations and the international standard CityGML for buildings, water facilities, and transportation facilities in Jeonju. In Jeonju, the research area, the LOD was defined, and the possibility of digital twin based on geo-spatial information was determined through data collection, analysis, and construction for each detail. In this study, it is meaningful that a plan to construct geo-spatial information for the implementation of a digital twin is presented, and the result of the construction is modeled as an urban standard model. The results of study are expected to be used as reference for detailed construction plans and standard establishment by governments and local governments promoting smart city and digital twin construction in the future.

A Study on the Restoration of Chimi Excavated the Wangheungsa Temple Site using 3D Scanning and Computer Numerical Control (3차원 스캐닝과 컴퓨터 수치 제어 기술을 이용한 왕흥사지 출토 치미의 복원 연구)

  • Park, Min Jung;Hwang, Hyun Sung;Hong, Shin Yeon
    • Journal of Conservation Science
    • /
    • v.35 no.3
    • /
    • pp.217-225
    • /
    • 2019
  • The chimi(ridge-end tile) of Wangheungsa temple is the oldest in our country. The upper part of the chimi was excavated from the southern side of Wangheungsa temple and the lower part from the northern side. These parts are considered to be portions of the same chimi, because they are similar in shape and are excavated from two sides of the same temple structure. However, the original shape of the chimi cannot be determined owing to substantial deterioration. Hence, in this study, replicas of the deteriorated chimi portions of Wangheungsa temple were fabricated by employing 3D scanning technology and the computer numerical control machining method. While observing the bending phenomenon of the chimi, the proposed model was warped realistically on the basis of the bending direction of the actual chimi. Consequently, the restoration process was modified several times. The results indicated that no gaps can be found between the upper and lower parts, and the corresponding patterns connect naturally. Furthermore, the proposed method is contactless, safe, operable, reproducible, and appropriate for restoration of artifacts. Additionally, the modeling data is semi-permanent. Hence, if modelling data is appropriately applied as per the characteristics of artifacts, it can be utilized in various fields such as virtual exhibitions, hands-on exhibitions, cultural heritage restoration, and production of teaching aids and souvenirs.

FEM Modeling Automation of Machine Tools Structure (공작기계 구조물의 전산 모델링 자동화)

  • Lee, Chan-Hong;Ha, Tae-Ho;Lee, Jae-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1043-1049
    • /
    • 2012
  • The FEM analysis of machine tools is the general analysis process to evaluate machine performance in the industry for a long time. Despite advances in FEM software, because of difficult simplicity of CAD drawing, little experience of joints stiffness modeling and troublesome manual contact area divide for bindings, the industry designers think the FEM analysis is still an area of FEM analysis expert. In this paper, the automation of modeling process with simplicity of drawing, modeling of joints and contact area divide is aimed at easy FEM analysis to enlarge utilization of a virtual machine tools. In order to verify the effects of modeling automation, a slant bed type model with tilting table is analyzed. The results show FEM modeling automation method only needed 45 minutes to complete the whole modeling process, while manual modeling method requires almost one month with 8200 calculations for coordinate transformations and stiffness data input.

Design Verification of APR1400 Reactor Vessel Through Re-engineering Approach

  • Mutembei, Mutegi Peter;Namgung, Ihn
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.15-23
    • /
    • 2017
  • This paper describes verification of APR1400 reactor vessel by applying the system engineering approach, in which the design re-engineering method is used to check the design parameters of APR1400 RV (reactor vessel). The RV is classified as safety class 1 and therefore must adhere strictly to the rules of ASME BPVC section III, subsection NB and seismic category I. This study explores designing the RV by following the ASME guidelines and making a comparative study with the current design. To meet this objective we apply system engineering methodologies to structure the process and allow for verification and validation of the major RV design parameters such as thickness of RV. The structural thicknesses of various part of RV are determined as well as reinforcements on the RV major nozzles. A 3D virtual reality model was created based on the design parameters using CATIA V5 and animation using Dassault Composer V2016. A comparison of re-engineered ARP1400 RV and standard APR1400 RV was done to show which design parameters were taken more conservative approach.

Digital Orthodontics using Customized Appliance System (개인 맞춤형 장치를 이용한 디지털 교정치료)

  • Kim, Yoon-Ji R.;Ha, Hye-Jung;Lee, Sung-Jong;Lee, Eon-Hwa;Ryu, Jae-Jun
    • The Journal of the Korean dental association
    • /
    • v.54 no.2
    • /
    • pp.134-141
    • /
    • 2016
  • Use of ready-made orthodontic appliance can lead to inefficiencies in the final stages of the orthodontic treatment. Because patients' teeth have anatomic variations, brackets that have been designed to fit on average tooth surface may result in positional discrepancies when leveling and alignment is completed. As a result, additional steps such as rebonding, wire bending and use of auxiliaries may be needed. Even in patients who have normal tooth anatomy and proper tooth size relationships, precise bracket placement is crucial in order to efficiently control the tooth positions. Digital models can provide advantages in clinical orthodontics as virtual tooth setup could be performed, and clinicians can easily visualize the predicted final occlusion. Through this setup model, customized brackets with individualized prescription and archwires that optimally fit with the patients' dental arches can be produced using CAD/CAM technology. Also, the brackets can be accurately placed with an aid of 3D-printed jigs. The purpose of this article is to introduce the commonly used labial and lingual customized orthodontic appliance systems using digital technology.

  • PDF

Docking and QSAR studies of PARP-1 Inhibitors (PARP-1 억제제의 Docking 및 QSAR 연구)

  • Kim, Hye-Jung;Cho, Seung-Joo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.210-218
    • /
    • 2004
  • Poly(ADP-ribose)polymerase-1 (PARP-1) is a nuclear enzyme involved in various physical functions related to genomic repair, and PARP inhibitors have therapeutic application in a variety of neurological diseases. Docking and the QSAR (quantitative structure-activity relationships) studies for 52 PARP-1 inhibitors were conducted using FlexX algorithm, comparative molecular field analysis (CoMFA), and hologram quantitative structure-activity relationship analysis (HQSAR). The resultant FlexX model showed a reasonable correlation (r$^{2}$ = 0.701) between predicted activity and observed activity. Partial least squares analysis produced statistically significant models with q$^{2}$ values of 0.795 (SDEP=0.690, r$^{2}$=0.940, s=0.367) and 0.796 (SDEP=0.678, r$^{2}$ = 0.919, s=0.427) for CoMFA and HQSAR, respectively. The models for the entire inhibitor set were validated by prediction test and scrambling in both QSAR methods. In this work, combination of docking, CoMFA with 3D descriptors and HQSAR based on molecular fragments provided an improved understanding in the interaction between the inhibitors and the PARP. This can be utilized for virtual screening to design novel PARP-1 inhibitors.

  • PDF

A Combined Pharmacophore-Based Virtual Screening, Docking Study and Molecular Dynamics (MD) Simulation Approach to Identify Inhibitors with Novel Scaffolds for Myeloid cell leukemia (Mcl-1)

  • Bao, Guang-Kai;Zhou, Lu;Wang, Tai-Jin;He, Lu-Fen;Liu, Tao
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2097-2108
    • /
    • 2014
  • Chemical feature based quantitative pharmacophore models were generated using the HypoGen module implemented in DS2.5. The best hypothesis, Hypo1, which was characterized by the highest correlation coefficient (0.96), the highest cost difference (61.60) and the lowest RMSD (0.74), consisted of one hydrogen bond acceptor, one hydrogen bond donor, one hydrophobic and one ring aromatic. The reliability of Hypo1 was validated on the basis of cost analysis, test set, Fischer's randomization method and GH test method. The validated Hypo1 was used as a 3D search query to identify novel inhibitors. The screened molecules were further refined by employing ADMET, docking studies and visual inspection. Three compounds with novel scaffolds were selected as the most promising candidates for the designing of Mcl-1 antagonists. Finally, a 10 ns molecular dynamics simulation was carried out on the complex of receptor and the retrieved ligand to demonstrate that the binding mode was stable during the MD simulation.